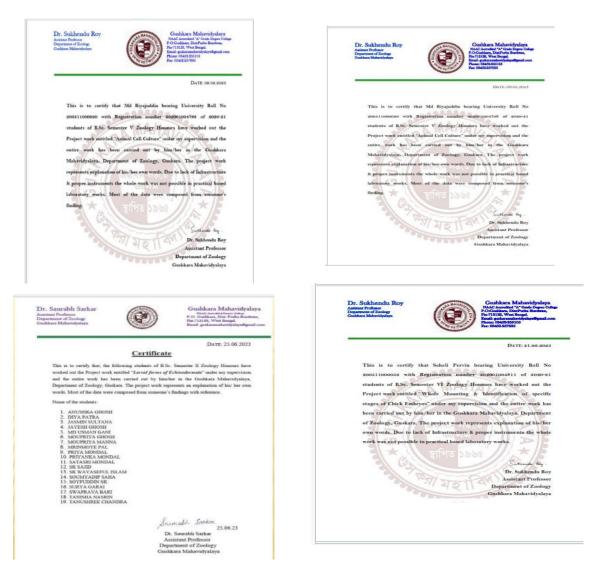
DEPARTMENT OF ZOOLOGY HONOURS

LIST OF STUDENTS: 35

- 1. ANUSHKA GHOSH
- 2. DIYA PATRA
- 3. JASMIN SULTANA
- 4. JAYESH GHOSH
- 5. MD USMAN GANI
- 6. MOUPRIYA GHOSH
- 7. MOUPRIYA MANNA
- 8. MRINMOYE PAL
- 9. PRIYA MONDAL
- 10. PRIYANKA MONDAL
- 11. SATASRI MONDAL
- 12. SK SAJID
- **13. SK WAYASEFUL ISLAM**
- **14. SOUMYADIP SAHA**
- **15. SOYFUDDIN SK**
- 16. SURYA GARAI
- 17.SWAPRAVA BARI
- **18. TANISHA NASRIN**
- **19. TANUSHREE CHANDRA**
- **20.** ANKIT MUKHERJEE
- 21. ARUNIMA GHOSH
- 22. AYAN BAIRAGYA
- 23. MUNMUN GHOSH
- 24. PRADIPTA KUMAR GARAI
- 25. RAJESH GHOSH
- 26. SNAHASIS MONDAL
- 27. SOUVIK NAYEK
- 28. SUBHOJYOTI GHOSH
- **29. TITHI BASU**
- **30. BARUN HAZRA**
- 31. SEHELI PARVEEN
- **32. MD RIYAJUDDIN**
 - **33. RAJRISHI MONDAL**
 - 34. SWAGATO MONDAL
 - **35. CHANDRADEEP DAS**

TITLE OF THE PROJECT:


- **1.** Aquarium maintenance
- 2. Duck Breeding
- 3. Report on Poultry farm
- 4. Glimpses of India's Wildlife in context of World
- 5. Project report on Animal cell culture
- 6. "Whole Mounting & Identification of specific stages of Chick Embryos"
- 7. Larval Forms of Echinoderms
- 8. Project report on *Drosophila* culture

DURATION WITH DATE:

(1-3) 16.11.2022 to 17.11.2022

- 4. 09.02.2023 (11 AM to 4 PM)
- 5. December 2022 to February 2023
- 6. February 2023 to June 2023
- 7.25.06.2023
- 8.28.06.2022

PROJECT WORK COMPLETION CERTIFICATE

LINK THE REPORT OF THE FIELD WORK: (PDF OF THE REPORT OF THE STUDENT)

- **1. PDF OF MUNMUN GHOSH**
- 2. PDF OF TANUSHREE CHANDRA
- **3.** PDF OF SEHELI PARVEEN
- 4. PDF OF MD RIYAJUDDIN
- 5. GENERAL PDF FOR ALL STUDENTS

SAMPLE PHOTOGRAPH OF THE FIELD WORK:

PERMISSION LETTER FOR FIELD WORK FROM COMPETENT AUTHORITY

To The TGC Guddara Mahavidyalaya	Ref. Nu. E-5/418(a)			
The TEC Cushkara Makavidyalaya			Date 14.11.2022	
Gushkara Makavidyalaya				
	To			
Guskara, Parta Bardhaman.	The Assistant Director	1.1		
Side Permission regarding the completion of field works of Semester 1 Hons. Practical Syllabas	Duck Breeding Centre Kalna Road	2.3		
Respected Madam,	Burdwan			
1 would like to draw your hind attention to that the Department of Zoology is going visit to Ramadagan Wuldlife Sanctuary, Onlaptag, Parta Barchanaan with 1 st Sannaster. Zoology Hons & General students on 0.045 0.005 in supervision of Dr. Saurah Sartara, Anaistan Professor of Zoology.	Sub: Prayer for permission to	visit the Duck Breedi	ng Centre on 17.11.2022.	
This is a part of their curviculum CC1 & CC1A practical syllabus .	Madam/Sir,			
In this connection I hereby such the necessary permission regarding the same.	I would like to draw your kin	d attention to that the I	best of Zoology is pains sight to	
Thunking you	I would like to draw your kind attention to that the Dept. of Zoology is going visit to Duck Breeding Centre, Kalna Road, Bardwan with 5th Semester students of Zoology General			
	Course on 17.11.2022 (Thursday) in	supervision of Dr. Sac	with Sador Accident Recting	
Sincerely	Course on 17.11.2022 (Thursday) in supervision of Dr. Sauzabh Sarkar, Ansistant Professor of Zoology and Mr. Uday Chand Mete, Technical Lab Attendum. This is a part of their curriculum DEe-1 Practical (Applied Zoology; Item No. 5 & 6) and Ribbas of Zoology			
Swelsenton Roya or +2-				
Dr. Sukhonda Roy 8-5 Anistant Professor of Zoology	General Course, *			
P ^{ar} SEM Chabbars Mahavaliyalaya				
1. Assubba Ghuah 8. Dite Parca	In this connection I hereby seek the necessary permission for the same,			
A. Jasmina Saltana	Thanking you.			
 Md. Uzman Gani Mospriya Ghush 			Yours faithfully.	
 Mempriya Mansa Metinanego Pa) 		3 3	Sabine Begum	
 Propa Mondal 		TI Dan Juna		
 Projektivski Boligandi blani Boligandi blani Boligandi blani Boligandi blani Boligandi blani Boligandi blani 		al and all	Teacher-in-Charge	
11 forfeidin finin		Canad	Gushkara Mahavidyalaya Teacher-in-charge	
	List of Students:		Gushkara Mahavidyalaya	
14. Ek. Bagat 18. Tanluku Maarim	1. Ankit Mukherice -	5th Semester		
	2. Avan Bairagya -	5- Semester Do		
17. Designerary Hari	3. Aranima Ghosh -	De *		
10. Satarri Mandal	4. Munmun Ghosh -	Do		
00: Pohota Historia E1: Anorag Cheredhari	5. Tithi Basa -	Do		
UR. Mag Difficill	6. Souvik Navek -	Do		
	7. Snehasish Mondal -	Do		
	 Pradipta Garai - 	Do		
	9. Subhojit Ghosh -	Do		
	10. Rajesh Ghosh -	Do 1		

PROJECT REPORT ON MAINTAINENCE OF

FRESHWATER AGURIUM

University ROLL: 200611010011. Years; 3rd

Registration NO; 202001004851

session : 2022-23 (5th sem-Gen)

Page No. NO. Date. PROJECt Report on maintainence OP Freshwaters aguriam Systemos 612008 01 moneerly ->05 Report > 03-07 To our alland -> 08 D Teacher's Signature

Page No. 01 Date. Einenoquerion) : enconsince and really and really mayor AP strand I wanter in the man when a some and in as acound , and all oursecul verse storges ened any rest could and adverte as presentation and and area dura ando' carcaselones areas areas areas areas and and Bueyo Buever ar bose di and di real meneraling sur, arenation and, area and register & weber and only getter were al Please orcorde. Alla ville chicarlosus males secure anotal man ereig 2121 Plas augur

Teacher's Signature ...

0

Teacher's Signature

Page No.

Date.

02

mandereeder (rommared); ensucho mossicio sonté forza maintance of of freeshwaters aquarians as any องการกรุง สุรมหายา พรรณิศารกรุง กิรกรุง เอการกรุง Nul rawing field visit auchinder abs 32 16.11.2022 Grages artist frem oursign Bragmangrancy - Sugo durine clence centre क 2779 1 जा नगराम दलीव्यर्थ, रअखादत आलाए TICKEE EAGE ALACARYO MO AUGIERO ATTIGAR भनुनारि ७ बाएछ बादनक दिएदनक छितित्र दर्माद्वा क्षेंगे लोगक हिमास जोता दासि जायि र टक्स अटमका विकार हो ही साम कि मार्थ के मामकि ट्यावे wing from, Rônio acuerano auguerberes men ourrers andre १म् जिम्ति अर्थ अमुहक्माद्विमान ड्रालिए लाहिन्मर कड्यून। देति आज्ञादमत् ख्यादपतार्कियाज्ञ नाविह्यह उत्याद्राल मानाएफास जमा दमन , जीखादव अमदला किमास चूलि <u> अदिस्कार्थ</u> देखे रेते की बाहत लोट का के हो के लो लाक्तार्डाहला रूम र्वजाहरि, worry acorna tow aroun orrangho tow around orrangen and wan d'a sale ouver auce guar Bunt देवते रे जित्त <u>अप्रि भ</u>र्थका स्वर्ध्या दे कार्य के कार्य के कार्य RD with hour 221

Bundwan science centre

Reponde :- maintainence of freshwater aquariam. מעובתוניציות אות אופטול צורטיני אוולטוני aucouprie end bieno gioung debieur महमाहीमं जायहिमाय खतक स्विधहीमेंहर स्वर्टणाई Nord Euro cocoupui 1- Exer 1823 Ob are aucu मान्छटल विद्युन्छ नाटक सिम्हा राष्ट्रपार्छ न्ट्याल्यव वित्रमुर्वि विद्यु क्रमम अहाटका क्रिमाझा O stores a year in and arous a la and are a gally and वित्रमुख्या काटत जाइता दिहिला (1) arman continu (5) allero à ousio a ousey (3) areno morra Fabrication of the tank: ण्डलागन ज्यादपार्ग् मास अए ज्यादन जयादि जिल्यू या ज्यामण und ander ausero and ester aleur steud ant eupr, Surrow and Bulguese Menuer Second Min 1 Sun wingen word a credit all allower whith and कीर्ट्स् देवा, जोयक किंभाय काद्यादा खाला का कि कि RD मालाटमा खाय प्राए खायमान दमदा रिमझाए फ्या अवमा 205 your Brain arour groat Teacher's Signature .

Bundwan science centre

• ल्यादकाईग्रेग्राम झाल्ला ह भाषा ही साम हि समावल राज्य के का दा राष्ट्र राष्ट्र देव भाष्याका के Breno and and and allearly in Funcus and needer gra ouer ne बिद्युत्त -Das the insis all with drawing mendinge graves (B) abus area of the plant of the stand of the company of the achude carry quee's cos were sea. (a) pueso auni allearly iller cours are suge of 3 can latter chai and replease that laged ern zur surom zour zouer meens cos minien zu (0) abud Ruce à ceas rendias Sy was sur suis Alle and all's and by all and (E) Den orenoszan casedor men me meanero web cruce, and clearly clud and ordered -excavion unició malere areà arento - le compensi ester was Jui (E) abui eur riene ones last rales gen aller actual were cere cab edile sugare are shi वार फाउँ महरूत द्याहता उग्लाम दास्ता के दिटला मार्ग RD स्टकेर मने व्याह्य्याहे माह्य Teacher's Signature ..

Page No. 05 NO. Date. · enderer of and a surple of the caster of a a mitter and a and a and a man with a conter anoras 221 (3) ausilland seen and and and anoria poundo serve and were curi (3) an onefore çan arico treso marilà manità allasio acos 23' (4) anterent acondo aviego surrent minerala - and a ! (2) Mucho gang angrene of and an in the subsection (2) (5) write a oucus sure vôres (1) Allero and and cours water aby (8) red med one ware sho supply on willing (3) ceretalin the worder of a dear tood . (10) Consignation of en aliano

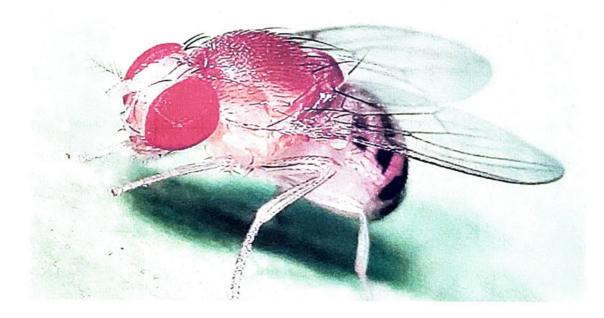
D

For: silver boulan

Red said fish

Date. silver pouran: ज्यादीएनक साम्हि कार्ट्राईकाइ जीम् रहातम काक्ट्र desury web ourservous support of and out of and Ruis surero ever wit of uctas ou crainelegent wiencoo entre la min au cos adres entres ente - снен ней aca ducano such a acech Rugi खादाकिति रूट्रा द्याहर् प्रदेशके कारण्डल कि माया दमदर्श waren's chang entry suits style cucht granding mu energeno cere mini acho seres areas orcuma deme succe easeer a Plunge a commenta mi aler etter and web acte acted acted acted and acted where we are a reaction of the contraction of the Red Tail shank !! mundero af tracoas our my augues moncas स्त्रा खायल दे में हिस्मेल लेट्या हे हाहरें जयत ट्याय क राहरेंगा अक्षेत्री दिल्ही, 200 दिल्ही आह आह आह आह आह खर्द्र जान्द्र खितिएक मार्विगटकुं अम्झाटमक आन्द्रेल्याटमुळ तम up admenter assars ren den Jees onecoel oumer marco accuracer suchio new Ros eta euchlo zieren ziazier chereite recoi desced erear stop survey DRD

For & sevenum



1000 ; word fish

Sevenum :-Artigenie Euro ansmiga augen cuecona michero erer rin' abe learguent wieacho सम्हा जहा जात्य किल्लाह, जार्य सुरार्थ हिल्लाल - पर ब्रिट्वर दिकलिए साटमल पाढ़िहिल, खिंद रुख होता जात रहे, द्राट रहे, बारायायाय sume accurater, sos cach se cu só secor were the rand was and cace marco wice. GOLD Fich : and concer and 1000 são area eja course ycarle sunder court meers only Dellas Na wea . apeueu nabueedo cause pur ouch a अपर्य के खार्राकि ट्रास्ट्र क्रियट्य , द्राम्नन काटमार्ड, Sucom com, mon com, man car, Ausa, cofu cofun orac abarde fally ! were control and a good when and an ered and nis curi and dem. acho crosia allu coru as Mont carene de unit alle uniter manue איטלטרעה היופרא ארבה הבנה אוכה אוכה היוהי मटना, अर्थ द्वाल मिल्म न्याप्रति जगादन देख स्ताक्तादनाए द्वा इन्दर दलाखग्र,

PROJECT REPORT ON Drosophila CULTURE

PROJECT SUBMITTED IN PARTIAL FULFILMENT FOR BACHELOR DEGREE OF SCIENCE IN ZOOLOGY

SEMESTER-VI HONOURS FINAL EXAMINATION (CBCS) - 2023

CC - 13: DEVELOPMENTAL BIOLOGY LAB (PRACTICAL)

)

THE UNIVERSITY OF BURDWAN

ROLL NO:- 200311000020

REGISTRATION NO:- 202001004798 OF 2020-21

Dr. Saurabh Sarkar Assistant Professor Department of Zoology Gushkara Mahavidyalaya

Gushkara Mahavidyalaya P.O: Gushkara, Dist: Purba Burdwan, Pin-713128, West Bengal. Email:guskaramahavidyalaya@gmail.com Phone: 03452-255105 Fax: 03452-257635

CERTIFICATE

This is to certify that MD RIYAJUDDIN, bearing University Roll No:-200311000020 with Registration number 202001004798 OF 2020-21 students of B.Sc. Semester VI Zoology Honours have worked out the Project work entitled "*Drosophila* Culture" under my direct supervision and the entire work has been carried out by him/her in the Animal House & Practical Laboratory, Department of Zoology, Gushkara Mahavidyalaya, Guskara. The project work represents explanation of his/her study. The pictures used in this project are captured during their own study.

Date: 24.06.23

Saurabh Sarkar

Dr. Saurabh Sarkar Assistant Professor Department of Zoology Gushkara Mahavidyalaya

CKNOWLEDGEMENT

I express my deep sense of gratitude to **Dr. Saurabh Sarkar**, Assistant Professor, Department of Zoology, Gushkara Mahavidyalaya under whose direction this study was conducted.

I am ever grateful to to **Dr. Sukhendu Roy**, Assistant Professor, Head of the Department of Zoology, Gushkara Mahavidyalaya, for his continuous encouragement.

I am thankful to **Aparnita Nandi Roy**, SACT, Department of Zoology, Gushkara Mahavidyalaya, for her valuable suggestions.

I am also thankful to **Dr. Nabyendu Rakshit** & **Miss Poulomi Roy**, SACT, Department of Zoology, Gushkara Mahavidyalaya, for their continuous support.

I am grateful to TIC, **Dr. Sabina Begum**, Gushkara Mahavidyalaya, Gushkara, Purba Burdwan, West Bengal.

My appreciation goes to **Mr. Kalyan Kr. Mukherjee** and **Mr. Uday Chand Mete**, Laboratory Attendant for technical works, whose active involvement smoothen the entire tedious venture.

I am thankful to my co-workers Barun, Rajrishi, Seheli, Swagata, Chandradeep for helping me to fulfilmy my project work.

I owe a lot to my parents, who encouraged and helped me at every stage of my personal and academic life.

Above all, I owe it all to Almighty God for granting me the wisdom, health and strength to undertake this project work and enabling me to its completion

> Md Ruyajuddin Signature of the student Name of the student

MD RIYAJUDDIN

9

3

)

)

)

)

)

)

)

)

)

)

>

)

>

)

•

,

)

•

,

•

6

)

ABBREVIATION

F ₁	First filial generation
F ₂	Second filial generation
	Heat shock protein70
Hsp70	Hours
h/hr	
mg	Milligram
min	Minute
mL	Millilitre
mM	Millimolar
nM	Nanomolar
Р	Parental generation
ppm	parts per million
SDM	Standard Drosophila medium
μg	Microgram
μL	Microlitre
μМ	Micromolar
gm	Gram
cm	Centimetre
mA	Milliamperes
kV	Kilovolt
М	Mole
EMS	Ethylmethanesulfonate
ENU	Ethylnitrosourea
DCV	Drosophila C Virus

CONTENTS

SI No	TOPIC	Page No
1	Introduction	1
2	Objective	1
3	SystematicPosition	2
4	Characteristic Features	2-3
5	<i>Drosophila</i> as a Model Organism	3
6	Life Cycle of Drosophila sp	3-4
7	Identification of the Fly	4-5
8	Rearing	5-9
9	Importance of <i>Drosophila</i> fly culture	g
10	Conclusion	9
11	Reference	9-10

Introduction :

D

D

)

2

1

2

N

2

1

2

0

2

J

3

3

3

3

3

3

3

3

5

3

3

Drosophila derived from the Greek word drósos means dew loving. They belong to the Drosophilidae family; and are most frequently known as fruit flies or often called vinegar, wine or pomace flies. Their main distinguishing character is to stay on fruits, which are ripped or rotten. There is another related family Tephritidae, their members are also called as true fruit flies or fruit flies. Drosophilae are different from them. They feed primarily on unripe or ripe fruits. Many species of Drosophila are agricultural pests, especially the Mediterranean fruit flies. They oviposit through ovipositor and capable of colonizing in live fruits that are still in the process of ripening, causing massive agricultural damage. Currently, the genus Drosophila is considered as paraphyletic group. The entire genus, however, contains more than 1500 species, which are very diverse in their appearance, behavior, and breeding habitat . However, many members of the family Drosophilidae are categorized into two subgenera, in which around 1100 species belong to Drosophila sub-genera, moreover, about 330 species belong to Sophophora subgenera including D. melanogaster. Furthermore, another Drosophila species, i.e., Hawaiian spp. have more than 500 species in which only 380 species are described. Furthermore, they are occasionally documented as a separate subgenus or genus, i.e., Idiomyia grimshawi, but this is not widely accepted. About 250 species are part of the genus Scaptomyza, which arose from the Hawaiian Drosophila and later recolonized in continental areas. However, Drosophila spp. are distributed all over the earth; moreover, many species are found in the tropical regions. Furthermore, the alpine zones, cities, deserts, swamps, and tropical rainforest also confine them. Furthermore, hibernation takes place in many northern species.

Their breeding takes place in numerous types of rotten vegetation and mycological materials, comprising barks, flowers, fruits, mushrooms, and slime fluxes. However, the maggots of *D. suzukii* act as the pest and feed on fresh fruits. Moreover, some species of *Drosophila* have achieved the status of parasites and predators. Furthermore, several species attract to lure of mushrooms and fermented bananas, but others deny attracting to every type of bait. Furthermore, females and males are assembled for mating on appropriate propagating materials separate from breeding sites to form leeks. Also, many Drosophila spp., comprising *D. immigrans, D. melanogaster,* and *D. simulans,* are found neighboring and accompanying with humans and are called domestic species. Also, human activities, such as transporting of fruits and other fresh food items, are responsible for introducing many species throughout the world, including *D. immigrans, D. melanogaster, D. simulans, D. subobscura,* and *Zaprionus indianus* (Farzana Khan Perveen 2018).

Objective :

i) To introduce normal "wild type" and various mutant phenotypes.

ii) To conduct genetics experiment this span of generation.

iii) To introduce the use of the chi square statistic to test hypotheses concerning expected and observed ratios.

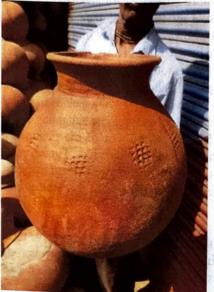
iv) To determine the ratio of monohybrid cross, dihybrid cross and sex linkage cross of Drosophila melanogaster.

v) To design genetic cross to illustrate segregation, independent assortment and sex linkage.

vi) To discuss the life cycle of Drosophila melanogaster.

vii) To differentiate between male and female of Drosophila melanogaster.

viii) To determine the progeny from the cross between wild type and vestigial (monohybrid cross), wild type and vestigial, Sepia eye (dihybrid cross) and wild type and white eyes (sex linkage cross).


ix) To familiarize you with an important research organism, the fruit fly,

Drosophila melanogaster.

x) To help you understand the presence or absence of a genetic trait in an individual and the ratio of that trait in a population.

xi) To understand Mendelian genetics and inheritance of traits.

dante nati

ratabile (sta - - - hat, automore, ferrely an an and () summary are ausa around feet

Systematic Position :

Domain: Eukarya

Kingdom: Animalia

Phylum: Arthropoda

Class: Insecta

Order: Diptera

Family: Drosophilidae

Genus: Drosophila ("dew lover")

Species: D. melanogaster ("dark gut")

Characteristic Features

1. Physical Description

Drosophila matures through complete metamorphosis, as do all members of the order Diptera. Similar to all insects Drosophila is covered in a chitinous exoskeleton; has three main body segments; and has three pairs of segmented legs. Like other flies, Drosophila melanogaster has a single pair of wings that form from the middle segment of its thorax. Out of the last segment of its thorax (which in other insects contains a second pair of wings) develops set rudimentary wings that act as knobby balancing organs. These balancing organs are called halters. Other Physical Features: Ectothermic; heterothermic; bilateral symmetry. Sexual Dimorphism: Female larger; sexes colored or patterned differently.

2. Reproduction

Reproduction in *Drosophila* is rapid. A single pair of flies can produce hundreds of offspring within a couple of weeks, and the offspring become sexually mature within one week. As in all insect species *Drosophila melanogaster* lays eggs. The eggs are placed on fruit, and hatch into fly larvae (maggots), which instantly start consuming the fruit on which they were laid. Male flies have sex combs on their front legs. It has been theorized that these sex combs might be used for mating. However, when these combs are removed it seems to have little effect on mating success.

3. Lifespan

Average ligespan 0.3 years.

4. Behavior


The behavior of *Drosophila melanogater* is simplistic. They are easily drawn towards the smell of any food source, and will mate almost

indiscriminately with any individual of the opposite sex.

5. Food Habits

As the name implies, the fruit flies lives primarily on plant material. The adults thrive on rotting plants, and fruits; while eggs are usually laid on unripened/slightly ripened fruit, so by the time the larva develop the fruit will have just started to rot, and they can use the fruit that the egg was laid on as their primary source of nutrition. *Drosophila* are considered major pests in some area of the world for this reason.

6. Economic Importance for Humans

Positive impacts: This species is widely used in scientific research, Source of medicine and drug.

Negative impacts: Drosophila melanogaster has been known to over winter in storage facilites, where it can consume/ruin vast quatities of food. As stated above, the fruit fly also lays its eggs on unripened fruit, and is considered a pest in many areas.

Characteristics of Drosophila that make it a good model organism:

- 1. Small, easy and cheap to maintain and manipulate
- 2. Short lifespan
- 3. Produce large numbers of offspring
- 4. Development is external
- 5. Availability of mutants
- 6. Lots of previous experiments and discoveries
- 7. Genome is sequenced
- 8. Homologues for at least 75% of human disease genes
- 9. Exhubit complex behaviours
- 10. Fewer ethical concern

Drosophila as a Model Organism :

Both toxicological and pharmacological researchers use animals for scientific and research purposes (Siddique et al. 2011, Ram and KarChowdhuri 2014). In recent years, for several emerging ethical issues, use of alternative model organisms replacing the established mammals are encouraged in research, study and testing purposes and for maintenance of ecological balance (Mukhopadhyay et al. 2003). Drosophila is considered to be a well-established model organism for environmental toxicity monitoring studies as suggested by the European Centre for Validation of Alternative Methods (Festing et al. 1998, Benford et al. 2000). Recently Drosophila has been used vastly as a model organism in clinical drug discovery processes also (Betl et al. 2009, Giacomotto and Segalat 2010). Fully sequenced human and Drosophila genome analysis show that approximately 75% of known human disease genes have similar homologues in Drosophila (Lu and Vogel, 2009). Hence Drosophila is considered as an established model insect for medical research purposes (Reiter 2001).Rationality for selecting Drosophila as a model for this study is presented in the following points:• small size

- sman size

)

)

)

.

2

2

)

)

- easy to handle
- short life cycle
- sexual dimorphism
- · easy to anaesthetize
- · low cost equipment for culture
- · little space required for culture
- · similarity with human genome

Life Cycle of Drosophila sp :

Drosophila completes entire life cycle within two weeks only at $(25 \pm 1)^{\circ}$ C (Ashburner and Thomson 1978). As other holometabolous insects, life cycle of *Drosophila* consists of four stages - egg (embryo), larva, pupa and adult. A gravid female lays nearly 400 eggs (embryos) measuring 0.05 mm in length on sugar containing fruit or decaying materials. After nearly

12-15 h (at 25°C), 1st instar larvae which are coming out from eggs moult twice (2nd and 3rd instar larvae) at about 24 and 48 hours. Larvae feed on sugar in fruit and micro-organisms that decomposes the fruit. After that, larvae encapsulate itself in puparium for 4 days metamorphosis (at 25°C) and adult flies emerge from puparium (Ashburner and Thompson 1978; Ashburner et al. 2005).

genome analysis show that approximately 75% of known human disease genes have similar homologues in Drosophila (Lu and Vogel, 2009). Hence Drosophila is considered as an established model insect for medical research purposes (Reiter 2001). Rationality for selecting Drosophila as a model for this study is presented in the following points:-

- · small size
- · easy to handle
- short life cycle
- sexual dimorphism
- · easy to anaesthetize
- · low cost equipment for culture
- little space required for culture
- · similarity with human genome

Life Cycle of Drosophila sp :

Drosophila completes entire life cycle within two weeks only at $(25 \pm 1)^{\circ}$ C (Ashburner and Thomson 1978). As other holometabolous insects, life cycle of Drosophila consists of four stages - egg (embryo), larva, pupa and adult. A gravid female lays nearly 400 eggs (embryos) measuring 0.05 mm in length on sugar containing fruit or decaying materials. After nearly

12-15 h (at 25°C), 1st instar larvae which are coming out from eggs moult twice (2nd and 3rd instar larvae) at about 24 and 48 hours. Larvae feed on sugar in fruit and micro-organisms that decomposes the fruit. After that, larvae encapsulate itself in puparium for 4 days metamorphosis (at 25°C) and adult flies emerge from puparium (Ashburner and Thompson 1978; Ashburner et al. 2005).

Identification of the Fly (male/ female; different species; different mutants) : Male Fruit Fly:-

Male fruit flies have yellow-brown bodies with brick red distinguishable eyes. Males are smaller than females. Male fruit flies are easily identified by their color differences and certain characteristic features. However, certain features of males are less noticeable in newly emerged male flies. Sex combs are one of the best characteristic features found on the forelegs of male fruit flies that are used to cling onto female flies while trying to mate. In addition, males also have hairs called claspers around the reproduction parts that help to attach to a female during the copulation period.

Female Fruit Fly:-

The overall body colors of female and male fruit flies are similar. However, females are quite larger than male

Female flies are ready to court with males after about 8-12 hours from their emergence. It takes around 15-20 minutes to complete the copulation. Females can lay about 400 eggs, and they lay eggs on rotting fruits and decaying mushrooms. The size of an egg is about 0.5 mm long. Once female fly lays eggs, it takes usually 12-15 hours to hatch them.

Different Fly Species:-Fruit flies, a kind of filth fly, are a nuisance in homes.

Many species in this category thrive in kitchens, bathrooms, and even sink drains. As a result, residents may refer to a variety of filth flies as house flies. All of these fly species reproduce quickly, and infestations can spread

The first step to control the pests is to identify which of the different house fly species is causing problems. Divided into two groups by size, these types of house flies frequently invade homes.

Page | 4

n animo Panima y Panima y Panima y

er og form Fræddinger graffige

unanna mil

Fruit Fly

Yellowish-white or tan with red eyes, these pests feed on sugary items. They develop inside drain lines or almost any source of moisture that accumulates inside poorly cleaned garbage containers. Fruit flies are kitchen invaders that drink and are attracted by vinegar, soda, or the juice of overripe produce. The insects crawl into liquids or sticky syrups, causing contamination. Fruit fly infestations typically are more frequent in summer and fall, but will occur anytime a suitable source of food and developmental sites are nearby.

Mutant Fruit Fly:-

The fruit flies in this exhibit show just a few of the mutations that occur in natural fruit fly populations.

The genetic instructions to build a fruit fly-or any other organism-are imprinted in its DNA, a long, threadlike molecule packaged in bundles

called chromosomes. Like a phone book made up of different names and addresses, each chromosome consists of many individual sections called genes.

Each gene carries some of the instructions for building one particular characteristic of an organism.

To build a complete organism, many genes must

work precisely together. A defect in a gene can cause a change in the building plan for one particular body part-or for the entire organism.

Mutations are neither good nor bad: some may be beneficial for an organism; others may be lethal. By creating new gene versions, mutations are a driving force for changes in evolution, sometimes leading to new species. Biologists learn about the proper function of any gene by studying mutations. If a defective gene causes short wings, for instance, scientists know that the healthy version of the gene is responsible for correct wing formation.

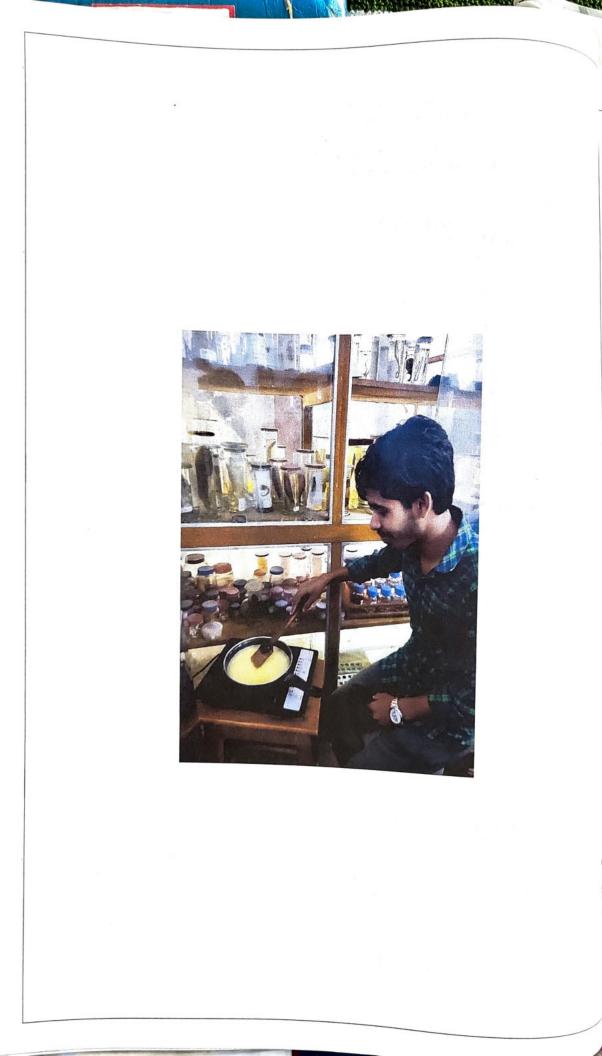
Rearing :

Basic instruments required for fly culture

I. Bottles (250 ml) and vials (40 ml ,100 ×25 - mm diameter)

- II. Medium (fly food)
- III. Microscope
- IV. Autoclave

V. Anesthetization Equipments


- VI. Environment test chamber
- VII. Funnel
- VIII. Insect pins
- IX. Petridis
- X. Brushes and forceps
- XI. Cotton and cotton balls
- XII. Bloating paper
- XIII. Distil water
- XIV. Alcohol
- XV. Labeling tape

Environmental conditions required for fly culture

The easiest way to grow flies is at room temperature. However, the optimum rearing condition is a temperature of 25°C and 60% humidity. In these conditions generation time is shorter (9-10 days from egg to adult). Unless equipment is readily available this is unnecessary for successful rearing and crossing of flies. It is preferable to keep flies out of drafts and direct sunlight or heat sources. These will rapidly dry the media, necessitating frequent

Collection of flies

Drosophila melanogaster stock was collected from one Drosophila Stock Centre in Toxicology Research Unit, Department of Zoology, The University of Burdwan. Stock flies are collected in vials and transferred to Animal House, Department of Zoology, Gushkara Mahavidyalaya, maintain the temperature.

Standard Drosophila Medium (SDM)

Drosophila melanogaster was selected for the present study as the model organism. Flies were cultured in Environmental test chamber at 22±10C. They were allowed to feed on Standard Drosophila Medium (SDM) containing corn powder, agar agar, sucrose and yeast extract powder. Nepagin and propionic acid were added as antifungal agents.

Components	Amount	
Agar-agar (Qualigens, India)	3 gm	
2. Corn meal (Victoria Foods PrivateLimited, Delhi, India)	17 gm	
3. Yeast extract powder (Qualigens,India)	6 gm	
4. Sucrose (Merck, India)	15 gm	
5. Distilled water	360 mL	
6. Propionic acid (SRL, India)	1 mL	
7. Nepagin [n-methyl-p-hydroxy- benzoate] (Sigma Aldrich)	1 gm	
8.90% Alcohol	1-2 mL	

Specified amount of Agar-agar, Corn meal, Sugar and Yeast were weighed and mixed in a 1000 mL glass beaker. Then required amount of distilled water (as specified in the above table) was added and boiled with continuous stirring to avoid unnecessary adhesion with container. Continuous boiling reduced the volume of the food to nearly one third (1/3) of its starting amount and a thick sticky consistency was achieved. Then propionic acid as well as nepagin powder (dissolved in 90% alcohol) were added as antifungal agents.

Food thus prepared was used as culture medium for the flies and was poured in bottles, phials and petri plates and was cooled subsequently,

followed by tight cotton plugging. Food containers were carefully monitored at regular intervals to avoid contamination as well as fungal and mite infections. Food medium was changed at an interval of every fifteen (15) days for normal fly culture. The flies used in this study have been maintained in the above mentioned laboratory conditions for nearly 300 generations. Hence the flies used in these experiments are expected to be homogenous in nature. Overcrowding of flies in culture was always avoided.

Fly maintenance

PROCEDURES

Most large fly laboratories maintain stocks that are not in everyday use at 18°C on a 4-5-week generation cycle. Stocks should be kept as two to four independent cultures, and it may be convenient to keep these on alternating

generations, 2 weeks apart. Stocks are normally maintained in vials. Most stocks can be kept by dump-transfer of flies to fresh vials. However, it is important to avoid too overcrowded cultures and only 20 or so flies should be transferred. It is good practice to inspect the flies on transfer, to ensure that both sexes are present and that their phenotype is as expected. Fly laboratories may keep some stocks that require selection of each generation, and it is important that the stock keeper knows of any special requirements to keep any stock (these should be entered on the stock database, see below). The "sick tray" is an inevitable part of any stock room, a place where sickly stocks, or stocks going through a crisis, are kept under special attention. It

Page | 6

is very good practice to keep the old cultures for 2 weeks (at 18°C) after transfer, so that they can be used as a backup should the new stocks fail for any reason. Collecting Virgins

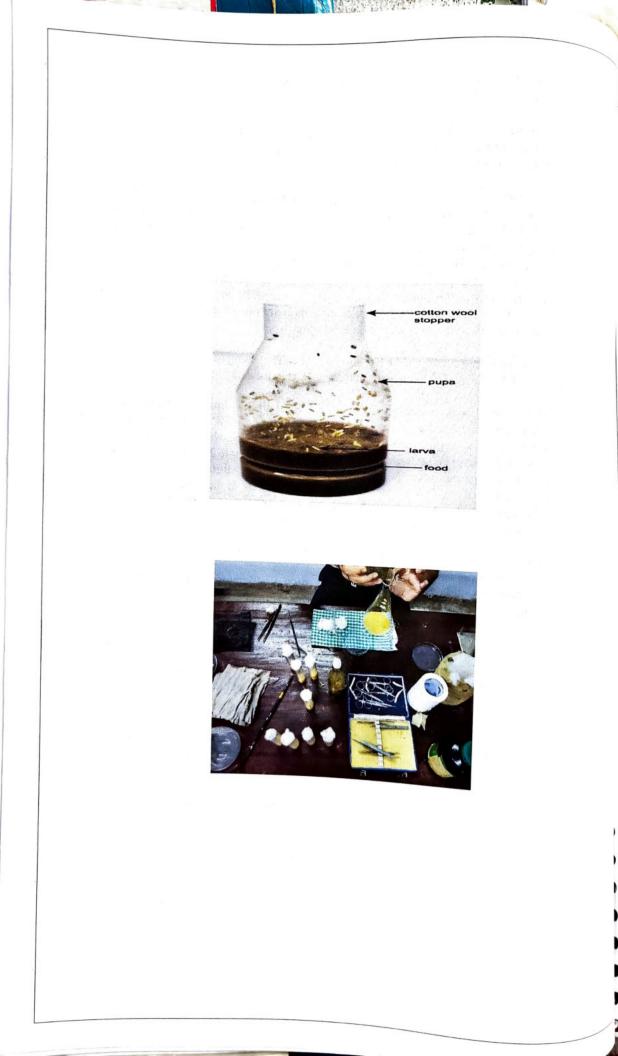
Two general methods ensure that female *D. melanogaster* are virgin when used to set up a cross. These can be called the "biological" and "genetic" methods. Only the former is considered here; for genetic tricks useful for virgin collecting, see Chapter 12 of Ashburner (1989).

Although some variation between stocks exists, the general rule is that females will not accept a male mate until they are 10-12 hours old (i.e., after eclosion from the pupa). Thus, flies can be collected during this window (or, better, between 8 and 10 hr after eclosion), anesthetized, separated into males and females, and stored until needed in yeasted vials. The females will then usually be virgin when used. As a preliminary check, the vials that were used for storing the virgin females should be kept and inspected 3 or 4 days later for any signs of larvae. If larvae are present, it is clear that at least one female in that vial was not virgin. Of course it does not matter too much if a single female is incorrectly stored with the males (as long as she is discarded); but a single male in the tube of females will play havoc. The rule for sexing for virgin collecting, especially when tired or rushed is: If in doubt, it is a male. The following is a convenient schedule for virgin collection.

Day 0: Clear all flies from emerging cultures in the late afternoon or early evening (e.g., 5:00 p.m. to 6:00 p.m.). Discard these flies. Store emerging cultures at 18° C in the dark.

Day 1: Put cultures at 25°C in the light, first thing in the morning. Clear all flies from the cultures \sim 1 hour later, anesthetize, separate into males and females, and store these in separate vials at 18°C until required. The young females, i.e., those that are relatively unpigmented and/or have unexpanded wings, will almost certainly be virgin. Check that the emerging cultures have no adult flies. Return the emerging cultures to 25°C in the light and possibly collect virgins last thing in the evening. Keep the "female" vials after using the virgins and inspect 3-4 days later for larvae. If present, presume that any females from that vial were nonvirgin at the time of use. (Note that the presence of eggs in the female-holding vials is not evidence of nonvirginity, even virgin females will lay eggs, albeit at a low rate in comparison with mated females.)

In practice, fly workers develop their own protocols for virgin collection that suit not only the flies, but also social and other activities. But please bear in mind, nonvirginity is by


far the most common reason for an "unexpected" result from a cross. It is therefore very good practice to design crosses so that nonvirgin progeny will be evident by their phenotype, especially if unexpected nonvirgin progeny could confuse the analysis of an experiment (Ashburner and Roote 2000).

Controlling Plagues and Diseases:-

i. One reason for the success of *D. melanogaster* as a laboratory organism is that it is relatively resistant to plagues and diseases. The two most common problems are molds overgrowing the medium and mites. There have also been disturbing reports recently of viral infections in some laboratories. The culprit is apparently a picornavirus (*Drosophila* C virus, DCV) and the symptoms of infection are black, dying pupae. The extent to which fly laboratories suffer from molds and mites varies greatly, but there is some general advice that can be given. The most important advice is that prevention is better (*far* better) than cure; two main guidelines for preventing plagues and diseases are below.

ii. Cleanliness. Keep a clean fly room, fly kitchen, and culture environment. For cleaning surfaces in fly rooms, use alcohol or a spray disinfectant, e.g., "Astell D."

iii. Isolation of new stocks. Quarantine all incoming stocks, no matter from what source, even if the distributor swears that they are free of mold, mites, or viruses. A quarantine facility (e.g., a dedicated incubator) should be situated as distant from the normal fly and culture rooms as possible, and all materials, especially discarded vials, must be segregated from those in regular use. It is probably sufficient to quarantine for two generations, and only transfer the stocks to the regular facility when close inspection shows them to be free of infection or infestation. For flies brought to the laboratory straight from the wild, four generations of quarantine are recommended.

iv. If an infection or infestation occurs, the first rule is to isolate all affected cultures to a quarantine facility. What is done next depends very much on the nature and extent of the problem.

v. Bacteria

The most common bacterial problem is mucus-producing bacteria on the food, which often produce a reddishbrown pigment (e.g., *Acinebacter* sp.). The addition of antibiotics (streptomycin, tetracycline, or ampicillin) to the food at a concentration of 250 mg/liter is usually sufficient to cure the problem within one generation. If the problem is recurrent, then investigate the possible sources of the contamination (e.g., the yeast). The use of dextrose, rather than sucrose, in the fly medium should prevent most bacterial growth. The routine use of antibiotics in the food medium is not recommended, as this will inevitably lead to resistance.

vi. Molds

Molds, usually species of *Penicillium* or *Aspergillus*, are a common problem, as fly medium is an ideal substrate for their growth. With healthy cultures, the flies normally out-compete these fungi, but they can prove to be serious for weak stocks or for cultures at low density. It is now routine practice to include mold inhibitors in medium. Those most commonly used are Nipagin M or propionic acid. For both bacteria and molds, persistent infections that are refractory to treatment can best be overcome by washing eggs in 70% alcohol.

vii. Mites

Several species of mites can infect cultures of Drosophila (Ashburner 1989).

Broadly speaking, the mites may be interested either in the flies' food (food mites) or in the flies themselves. The fly mites are rarer than the food mites, but far more dangerous. Food mites often come in with the raw materials of fly medium (e.g., corn meal). For this reason, it is good practice to store bulk meal at - 20°C and to be scrupulous about cleaning up any spills. One of the commonest causes of a serious mite infestation is allowing old fly cultures to fester in culture rooms or the fly room. These rooms must be inspected regularly by someone with the authority to autoclave old cultures without question. This is not an issue where the liberal social attitude so characteristic of fly labs can be allowed to constrain effective management. If mites are found, then the affected cultures must be immediately quarantined (even better, autoclaved, but this is not always acceptable). If foam or muslin cotton-wool bungs are used, then replace these immediately with bungs of nonabsorbent, tightly balled cotton wool; these should prevent the mites spreading further.

Rapid (i.e., daily) transfer of stocks or cultures can rid them of mites, but this can be dangerous for weak stocks. An alternative is to collect eggs and wash them free of any mite eggs before transfer to clean vials, or to collect pupae on paper inserts and wash them free of mites and mite eggs in 70% ethanol, again before transfer to clean vials. Tedion has been found to be effective against some common species of food mite.

Tedion is available from the Sigma Aldrich Library of Rare Chemicals and also from local suppliers of agrochemicals. Dilute the commercial product (usually 8% active compound) to 5000 ppm in acetone and soak 7-cm filter papers in this solution. Allow filters to dry completely and introduce one into each culture. Serious endemic mite infestations should never be allowed to build up. If they do, then seek professional advice to combat them, since they will require complete fumigation of all fly-handling rooms and equipment (Ashburner 1989).

viii. Viruses

In contradiction to the statements in **Ashburner (1989)**, infection with the double- stranded RNA virus DCV has been found to be a serious problem in a few fly laboratories in recent years. Its symptoms are the presence of dying black pupae, particularly in old cultures. In addition, DCV infection seems to block the induction of transgenes under the Hsp70 heat shock promoter (T. Tully, pers. comm.). T. Tully (pers. comm.) has developed protocols for eradicating viral infection (**Ashburner and Roote 2000**).

Fly transfer

Flies should be transferred every 10 to 14 days. Students should maintain a backup culture of their flies and the instructor should maintain backup stock cultures of all fly strains. There are two basic ways to transfer flies when forming new cultures. One requires no anesthetizing but quick hands.

Place a funnel in the mouth of a fresh culture vial that already has media added. In the old vial (the one with flies in it), gently tap the flies down by softly tamping the vial on a soft surface, such as a mouse pad. The flies will fall

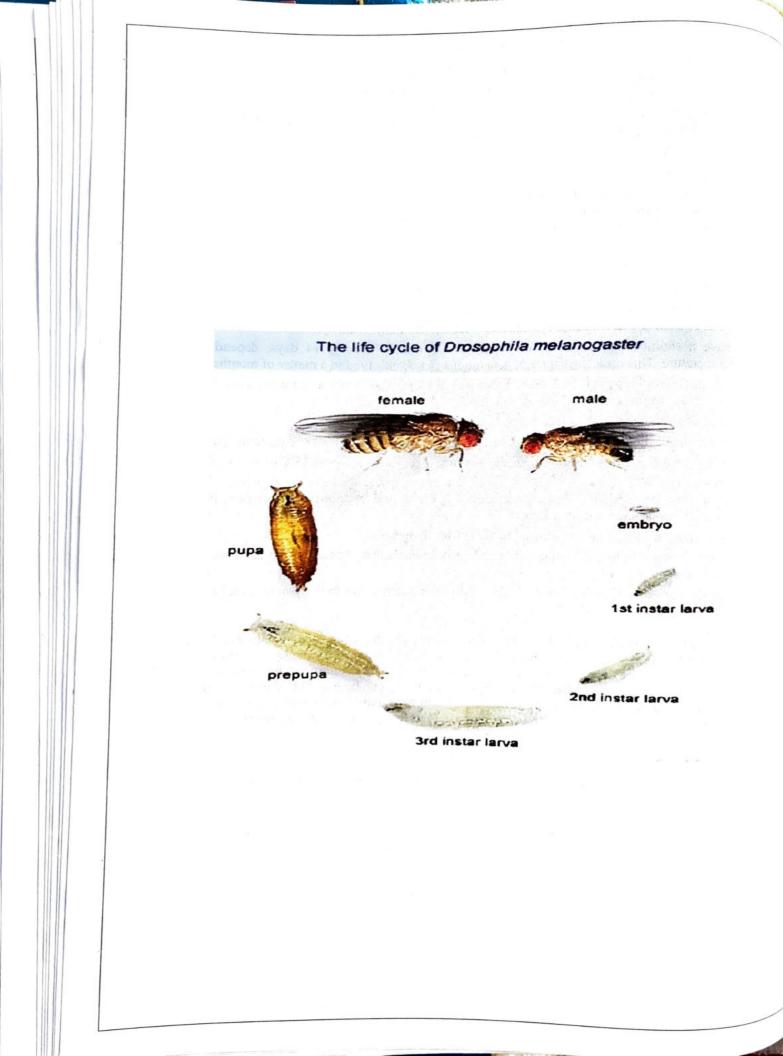
to the bottom and remain there for a few seconds (no more than that!), enough time to quickly take the plug off the vial, invert it into the funnel, and gently tamp, together, the two vials to force flies down into the new vial. An alternative way is to put the flies in the freezer for about 8 minutes. This will cause the flies to fall into a state of stupor. After placing a funnel on the new vial, invert the vial with motionless flies into the funnel. This is not as much fun but you won't have any flies flying around the classroom.

Cleaning/ Sanitization

Keep a clean fly room, fly kitchen, and culture environment is very much important for Drosophila culture. For cleaning surfaces in fly rooms, use alcohol or a spray disinfectant, e.g., "Astell D." (Ashburner and Roote 2000).

Importance of Drosophila fly culture

1. The relationship between fruit fly and human genes is so close that often the sequences of newly discovered human genes, including disease genes, can be matched with equivalent genes in the fly.


2. 75 per cent of the genes that cause disease in humans are also found in the fruit fly.

- 3. Drosophila have a short, simple reproduction cycle. It is normally about 8-14 days, depending on the environmental temperature. This means that several generations can be observed in a matter of months.
- 4. Fruit fly are small (3 mm long) but not so small that they can't be seen without a microscope. This allows scientists to keep millions of them in the laboratory at a time.
- 5. They are inexpensive to maintain in the laboratory.
- 6. They require a simple diet consisting of simple sources of carbohydrates (commeal) and proteins (yeast extract).
- 7. The only care they need is having their food changed regularly (every 10-14 days at 25°C or 5-6 weeks at 18°C).
- 8. Drosophila have 'polytene' chromosomes, which means that they are oversized and have barcode-like banding patterns of light and dark. During early Drosophila research scientists could therefore easily identify chromosomal rearrangements and deletions under the microscope.
- 9. It is relatively straightforward to mutate (disrupt or alter) fruit fly genes.
- 10. The fruit fly provides a simple means of creating transgenic animals that express certain proteins, such as the green fluorescent protein of jellyfish.
- 11. The long and distinguished history of research devoted to the study of the fruit fly means that a remarkable amount is now known about its biology.
- Conclusion

The fruit fly *Drosophila melanogaster* is a versatile model organism that has been used in biomedical research for over a century to study a broad range of phenomena. There are many technical advantages of using *Drosophila* over vertebrate models; they are easy and inexpensive to culture in laboratory conditions, have a much shorter life cycle, they produce large numbers of externally laid embryos and they can be genetically modified in numerous ways. Research using *Drosophila* has made key advances in our understanding of regenerative biology and will no doubt contribute to the future of regenerative medicine in many different ways. (Jennings 2011).

Reference

- Introduction to Drosophila, By Farzana Khan Perveen, Reviewed: February 3rd 2017Published: February 28th 2018)
- Siddique, Y.H., Ara, G., Jyoti, S., Naz, F., Afzal, M., 2011. Protective effect of Apigenin against Ethinylestradiol induced toxic effects in the third instar larvae of transgenic Drosoohila melanogaster (hsp70-LacZ) Bg9. Pharmacologyonline. 3, 677-684.
- Ram, K.R., KarChowdhuri, D., 2014. Drosophila: A Model for Biotechnologists. Anim. Biotechnol. Academic press http://dx.doi.org/10.1016/B978-0-12-416002-6.00001-8

- Mukhopadhyay, I., Saxena, D.K., Kar Choudhuri, D., 2003 Hazardous effects from the chrome plating industry: 70 kDa heat shock protein expression as a marker of cellular damage in transgenic Drosophila melanogaster (hsp70-lacZ). Environ. Health. Perspect. 111, 1926-1932.
- Lu, B., Vogel, H., 2009. Drosophila Model of Neurodegenerative Disease. Annu. Rev. Pathol. 4, 315-342. doi:10.1146/annurev.pathol.3.121806.151529
- Reiter, L.T., Potocki, L., Chien, S., Gribskv, M., Bier, E., 2001. A Systematic Analysis of Human Disease-Associated Gene Sequences In Drosophila melanogaster. Genome Res. doi:10.1101/gr.
- Festing, M.F.H., Baumans, V., Combes, D.R., Halder, M., Hendricsen, F.M., Howard,
- B.R. 1998. Reducing the use of laboratory animals in biomedical research: problems and possible solutions. ATLA. 26, 283-301.
- Benford, D.J., Hanley, A.B., Bottrill, K., Oehlschlager, S., Ball, M., Branca, F., Castegnaro, J.J., Descotes, J., Hemminiki, K., Lindsay, D., Schilter, B., 2000. Biomarkers as predictive tools in toxicity testing. ATLA. 28, 119-131.
- Bell, A.J., McBride, S.M.J., Dockendroff, T.C., 2009. Flies as the ointment: Drosophila modeling to enhance drug discovery. Fly. 3, 39.
- Ashburner, M., Golic, K.G., Hawley, R.S., 2005. Drosophila: A Laboratory Handbook, Second eds. Cold Spring Harbor Laboratory Press: New York, 162-164.
- Ashburner, M., Thompson, J.N., 1978. The laboratory culture of Drosophila, In: Ashburner, M, Wright, TRF. eds. The genetics and biology of Drosophila, 2(a). Academic Press: London, 1-109.
- Ashburner, M. (1989). Drosophila: A Laboratory Handbook and Manual.
- https://www.orkin.com/flies/house-fly/different-house-fly- species
- https://www.differencebetween.com/difference-between-male-and-vs-female-fruit-flies/
- Michael Ashburner and John Roote : Adapted from "Laboratory Culture of
- Drosophila," Chapter 35, in Drosophila Protocols (eds. Sullivan et al.). Cold Spring
- Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 2000.

)

3

)

2

3

- Jennings, B. H. Drosophila a versatile model in biology & medicine. Materials Today. 14, (5), 190-195 (2011).
- https://www.education.com/science-fair/article/drosophila- metamorphosis/
- Drosophila a versatile model in biology & medicine, Barbara H.Jennings, Transcriptional Regulation Group, UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley St, London, WC1E 6BT, United Kingdom , Available online 23 April 2011.
- https://www.yourgenome.org/facts/why-use-the-fly-in- research.

Examined Stanbborg

Page | 10

VISIT TO A DUCK BREEDING CENTRE

Name :- Munmun Czhosh

University Roll: - 200611010011, Year: 32d Registration No: - 20200100 4851

Session :- 2022-23

B3c-gen-sth sem

Page No No. Date. visit to a poultry farmand Duck breeding centre sych mos 1 --- 100 Figh 200216 augu -> 5-3 fanor -> 4-2 01 - alcular warder RD ۰. Teacher's Signature

Page No. 01 Date. THUS (Introduction): אישורצור י בוצאות ביולישונה ושנה צוניוב שינה התנם באזאים כווחורהם בחמיזה אונהם האירוחום בדרוק כמי הוצווה צוויווים עו באור אומור אות על על אוני איליני איניניני ensite strung any conce ouries and cure n' cert Egi , as a contrue rever beres outo and rich's agest surveyue see and and and when a sund met acu' = currend (borreg) en grent rul remember on curges and any wight we the former and the sola unun county und agree & a week o 22' - non - 22 and a xer = Zo211 2151 The town na , was Sarana & and super Emmi ; and ander range on the च्छाती : आगल्ज दगदल्ला ; ति खतिंग्रिय देनाच्छती , तिछर्निकिम re forme marge o rep עשו י משותהדרוס יובר Kimilie, 8 112 rie : Aleur खारमारि ; रखादमार्जिर फाउन क्राहि: 21 हिंदिकाय • הבאימונה אליוצווים הדולעופי כאואעדקת בעוצועץ בלעם העילעועי - द्वाह, - og g ि ि र् कि, - उत्तर का कि कि مدو مدور می می می می مرور دو و مرور می مرور مرور می مرور می مرور مرور مرور می iond, Entre ugisterie existing of the faller faller

Teacher's Signature

MC.

Page No. OQ Date. zuderre eere (? rouward): <u>राहारा/2022</u> जासजा र्युटाकण्ड स्वाविमालत्भुव साखहरूखी ए सिम्हलण सिट्ल , पाकी स्ट्री कार्या के ट्रास्सटक खाट्र सिलाहा , स्ट्रायट्स कास्ट्रिय पाट्य res derin dana so Gerly and many and and and are's commendance of configuration TO'30 such and anone and such as and examples course , and and and Endenia aula wer course seme and concer could be and commencer and should enverige Asistant Eleverito Dr. Prabin sengupta. tota oursuch o salore survey are our oursucho erester putting and the me and a country but and asalower. KANCEN ELESTIO CENERS - Colar Sh KWNOG + איזוידור בעילבונים שמת הבאי ביסמום לתרשוע הטרתא - जयल 18 मिल NO ईलकिट टक्सन निर्माल्यात टकाल रूप्रा राष्ट्र אלאים אונונים בשונת ש-3 נוש אים נפא אונים באוני שאיי जाकाण अझमू दलकील देनकिछटपर्छठ टहासित एरत्लाहरदप cherment about all suger and contrate antere Consur alle de reamen - rement alle alle des endene whole will the start . agong on, prabin sengupta sin consiler o commend sing the चिटित् ७२५, किट्म् ज्ञार्ग्र्स, म्यू सिर्म् म्यु क्रि काहलक andizensi and one one of a during weak a contact ORD 21 Calificand colul Dave Courses Teache'r's Signature

Page No. 03 Date. 210 17/11/2022 Ourger 2012 2.20 41211 922014 62222164 cultures our our concerts sugarster the pros aday -case would all's ourside all out a contrar aca and anck preeding centre a culed contained. course & may gema suck breeding centre up Ast. proffesor pr. R.S Barebjee. שרא שתידורהם אוא מוזהות שואולט הוחד שאן שויאדנהים amplema mo onnor mon andra to phanner. Bour ounor The suger cruur and quertuces sucurates and and acourses Sur alister zier winu sin serer ander ween אין אינואיטי לענאיר באנשיע באנשיע העוצים האוביה ברבועונאי יצועישנת היוסיאים אונים אצ הת, שולוטתם שאונו No concert from lose enzy, many some americani mer rush, Aloversa, sur sality, weres ruler's mail tiven strong 22. sunda da securación rayon de sourse abui auna pour enear saber arch d' as Thomas . ORD

Page No. 07 Date. Report: र्द्राज खाल्मन हपर्ल ; प्रकारत आसीत जास आसादिक हन्नू मार मेरा जाताटतक हरिएका -28 tog sure weber ' Bucho rilad concor our anderio algeor of - & UP yer curric coord ouch Con contrato concella asterio asterio actioned संसक जास्त्र द्वा क्र द्वा क्र • स्राधिक प्रमुद्यला द्रैन्ट्यु द्वान्नि र्यान a such a surre asire guest concer to a co co co co co co nder 300 12 wind as sies cor wien so ado wind with the second with the two . and green's cere ' 22 2512' ' Detro and outloco relet John andich cary wice awy i · energia a sume sine lectarcula contractulity and Encent roos strangasared eger surges with and and Lucens as Não 2 abro as que aver abor 23' B gezica rich i care our our and a conce of a were ashew x22 hugaczab and siera sich ach wer si खिडमुटि रेग्य प्रादि रूठ जार्यु के क्याय किटला रे रुमे , क्रेंग्टमह no carly the word would cut ' reis cred or any we' the perigo and exco web . Nebo cuer au per cu alle sed suco carrie elu as riales such i sicos everne ación an ver colo vor in ' Teacher's Signature

ORD

Teacher's Signature ..

Date,

· Herio and around whether quanto anothe ene 100 rd stan ou and and and and and an cours BICAG MILLING 32 Kg ' HIMMEND'S PLAND Pal CACOL Ever ett) 30 rd' course stops gumun 10 rd' medd alen JONS . Windere Borrent waren's warenes 2 rd would be the Firsten will will a chilles and a cashe will we provide या काखमाटला एमाटप , म्राटमक सावादक टमन द्रावक का जा BAICEI CONFRED TODE MED JEA! · Lusser a rege a super construction 19 151 6 RE most Sucher cours a shis of the out of the warde men i aca a daeva con concas ashe sines - acho asan ten acui gas cours cours all fresh ones was म्हास कासर केंठेंठी गमें क्रिस सामाटने 10 17 मी माटमव सहते JUS 20 H que bushe 221 Enlas anisticaen gize zugibes gees , as, were end al lestated to hoursel of the state of the state from and the enco medi ation fulger cured surren etong MCONT LECTO CONCELENCE 221 , Juczo Cor There ares see 38 West 212 milest मिकि क्याटम किंत ट्यार राट्या देखी देव किहत कहे Quality 33 - 34.2 6 1000 and and 20-42 % RD sual vouso 1 stello

- Duck Breeding Center

• द्राट्यां अले 3 टकाया व्यक्टिंगतुः ם בהדרתה תקובתה בדבבום תו הם יעאים האק שוע כאכתוניואל यटविवे खटमेर लेग 1 12 यहमें तरप्रे वाटवेवे लीटपावे दसरबारव ज्यायह अहिटिक साढिए डर्ड्ड मिन्दिय एग्डा रहा, · JI WY 22 OLLO PLOIDS CHCMCO & Dares REPENDI ats the wing week to see on the see all all all acui zemaila a cos as case de entrestà muter and creshe crice alle a arts oradin acuio mas siejea ene 2-1.2 cuar دمعرا عد متم ' مدهط قاروي معدهد بيرديد هردساه مددهاه zigion aspica deur · Bassicar 1921 with a chan years 2100 14-10 210022 and rual Havero , or sign 1 & sign be and ment Astres J-4 Trege Low oncerto actude! · miles the conversion of the succession of the succession Sucrea (arcour 27) • क्रांटमण जिल्लाम मुर्टि द्वाट आज विवृद्ध आणित्मवक भीका दाखग्रा aboy' and correst der dem care par actual ORD Teacher's Signature ...

Date.

and 20 miles ange outres ange the DOUTRONT FIRE PROPERT 1.19 শুরমিন্ত এলান No and - राउ - अम्मत राक्न re mn colerne contrare

1071 A

2137 71-17-

कुछण्डला अरीका हु : answer's mapsifie andre Efert risit conca oursion meuns and ground and weber is and andre anolated onered entered entered a author personent as anth desimered Toas. wither areas and acutation areached areached Esto consudre adver these second and and our prostand current concorder any man unagene con érenes a alerana aver DR. PRabin senguriative Bro Ros. Barerojee encirca de asien des receiter de la sectiones. 6/12/2020

PROJECT REPORT CUM POWERPOINT PRESENTATION

ON

LARVAL FORMS OF ECHINODERMS

Submitted by

Tanushree Chandra University Roll No. 220311000045 Registration No. 202201004519 of 2022-23 Dr. Saurabh Sarkar Assistant Professor Department of Zoology Gushkara Mahavidyalaya

Gushkara Mahavidyalaya

P.O: Gushkara, Dist: Purba Burdwan, Pin-713128, West Bengal. Email: guskaramahavidyalaya@gmail.com

DATE: 25.06.2023

Certificate

This is to certify that, the following students of B.Sc. Semester II Zoology Honours have worked out the Project work entitled "*Larval forms of Echinodermata*" under my supervision and the entire work has been carried out by him/her in the Gushkara Mahavidyalaya, Department of Zoology, Guskara. The project work represents an explanation of his/ her own words. Most of the data were composed from someone's findings with reference.

Name of the students:

- 1. ANUSHKA GHOSH
- DIYA PATRA
- 3. JASMIN SULTANA
- 4. JAYESH GHOSH
- MD USMAN GANI
- 6. MOUPRIYA GHOSH
- 7. MOUPRIYA MANNA
- 8. MRINMOYE PAL
- 9. PRIYA MONDAL
- 10. PRIYANKA MONDAL
- 11. SATASRI MONDAL
- 12. SK SAJID
- 13. SK WAYASEFUL ISLAM
- 14. SOUMYADIP SAHA
- 15. SOYFUDDIN SK
- SURYA GARAI
- 17. SWAPRAVA BARI
- TANISHA NASRIN
- 19. TANUSHREE CHANDRA

Sawrath Socker

25.06.23

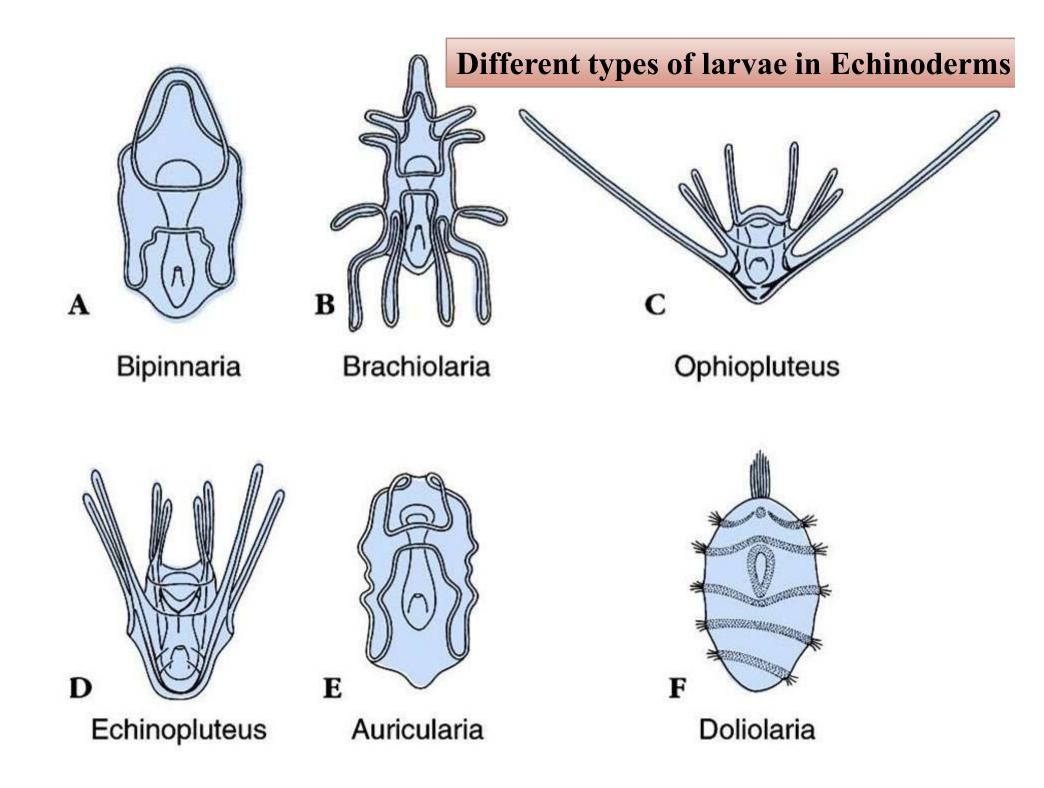
Dr. Saurabh Sarkar Assistant Professor Department of Zoology Gushkara Mahavidyalaya

- Echinoderms are unisexual animal with no sexual dimorphism.
- Fertilization external
- Echinoderms are deuterostomes and hence cleavage is radial, holoblastic and indeterminate.
- Development is mostly indirect having larval stage in between.

- The larvae hatch in water, feed and grow through successive larval stages to become adults.
- Larvae of Echinoderms are bilaterally symmetrical but lose symmetry during metamorphosis.
- Different classes of Echinoderms show structurally different larval stages.
- Comparison of the larval stages of different classes can reveal their evolutionary ancestry.

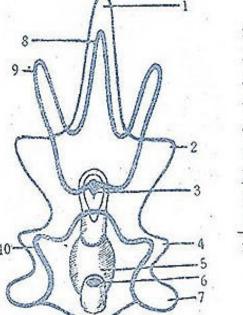
LARVAL FORMS OF DIFFERENT CLASSES

× CLASS • ASTEROIDEA


OPHIUROIDEA
ECHINOIDEA
HOLOTHUROIDEA

o CRINOIDEA

LARVAL FORMSBipinnariaBranchiolaria

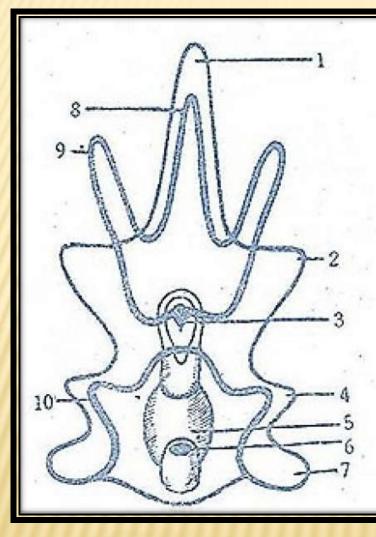

Ophiopluteus
Echinopluteus
Auricularia
Doliolaria
Doliolaria
Pentacrinoid larva of

Pentacrinoid larva of antedon/ Cystidean

BIPINNARIA LARVA

- It is the first larval form of Asteroidea.
- It is a bilaterally symmertrical, free swimming, pelagic larva.
- The pre oral region is elongated, postoral region is broad.
- It possesses two ciliated bands, the pre oral and post oral bands
- The anterior end of the archenteron develop as mouth whereas the blastopore becomes the anus.
- The pre oral and post oral ciliated bands are continued over a series of prolongation called arms.
- The bipinnaria larva is free swimming and free feeding form.
- After a short period of time, it transforms into branchiolaria larva.

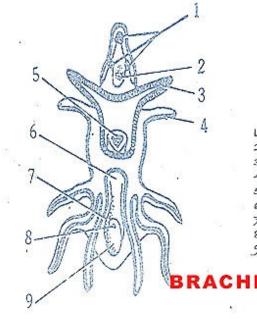
1.Dorso-Medían arm 2.Dorso-lateral arm 3.Mouth 4.Postero-dorsal arm 5.Stomach 6.Anus 7.Postero-lateral arm 8.Ventro-medían arm 9.Pre-oral arm 10.Post oral arm



The following are the names and the number of arms developing from pre oral and post oral ciliated bands:

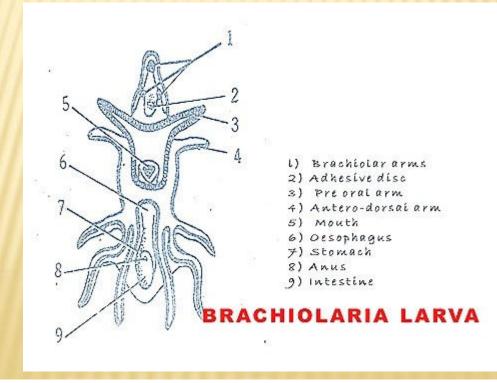
- two

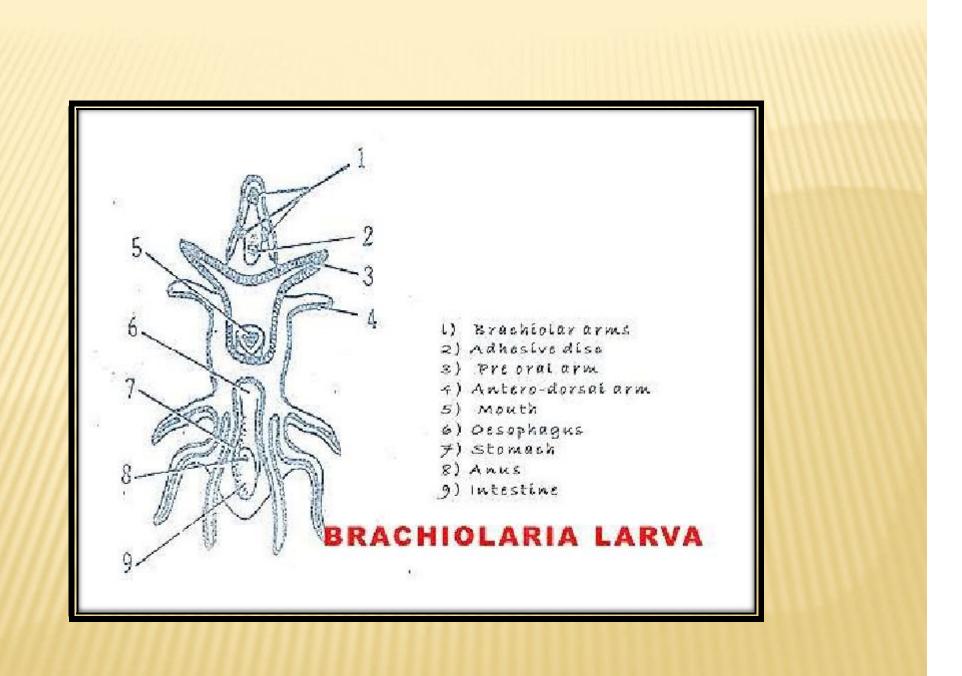
- Postero lateral arm - two • Post oral arm - two • Postero dorsal arm - two
- Antero dorsal arm
- Pre oral arm
- Ventero median arm - one o Dorso median arm - one
- two
- 1. Dorso-Median arm 2. Dorso-lateral arm 3. Mouth 4. Postero-dorsal arm 5. Stomach 6. Anus 7. Postero-lateral arm 8. ventro-median arm 9. Pre-oral arm 10. Post oral arm


BIPINNARIA LARVA

1. Dorso-Medían arm 2. Dorso-lateral arm 3. Mouth 4. Postero-dorsal arm 5. Stomach 6. Anus 7. Postero-lateral arm 8. ventro-medían arm 9. Pre-oral arm 10. Post oral arm **BIPINNARIA LARVA**

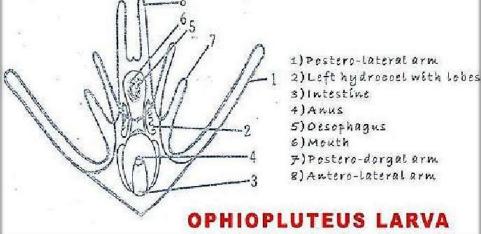
BRANCHOLARIA LARVA

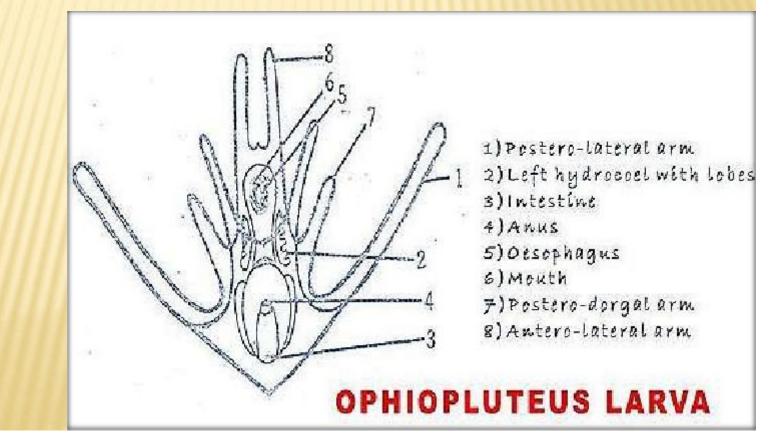

- Three additional arms are present on this larval form known as branchiolarian arms.
- These help the larva to adhere with the substratum.
- These arms are neither ciliated nor have calcareous rods and the coelomic cavity extends into these arms
- The three short arms are at pre oral lobe, one median and two lateral arms.
- They contain adhesive cells at their tips which act as a sucker.
- The rest arms degenerate and become long, narrow and slender.



l) Brachíolar arms 2) Adhesíve dísc 3) Pre oral arm 4) Antero-dorsaí arm 5) Mouth 6) Oesophagus 7) Stomach 8) Anus 9) Intestine **HIOLARIA LARVA**

METAMORPHOSIS OF BRANCHIOLARIA


- With the help of adhesive structures, it attaches to some object.
- Anterior portion acts as stalk for some time while posterior part having gut and coelomic chambers convert into a young starfish.
- This detaches itself and starts leading a free life.



OPHIOPLUTEUS LARVA

- This is the larval form of class Ophiuroidea
- This is free swimming, bilateral symmetrical form having a single ciliated band.
- It possesses long arms with ciliated bands at the margin.
- It has two anterio lateral, two post oral, two posterio dorsal and two posterio lateral arms.
- Out of these, posterio lateral arms are the longest and directed forward

- It has comparitively smaller, pre oral lobe.
- The post anal part of the body is quite well developed.
- Larva consists of coelomic chambers and archenteron.
- There being no attachment stage.
- Free swimming larva, metamorphose into tiny serpent star, which sinks to the bottom to begin its adult existence.

ECHINOPULTEUS LARVA

- It is a microscopic, free swimming larva of Echinoidea.
- It resembles the Ophiopluteus larva where the only difference is that it has more arms.
- This larva shows ciliated bands which are developed into arms.
- Fully developed larva consists of six arms supported by calcareous rods and its tips are pigmented.
- Postero lateral arms are very short and directed outwards or backwards.
- Locomotion is by ciliated bands, which in some cases become thickened and called Epaulettes
- There is no attachment stage.
- Metamorphosis is extremely rapid taking place in about an hour.

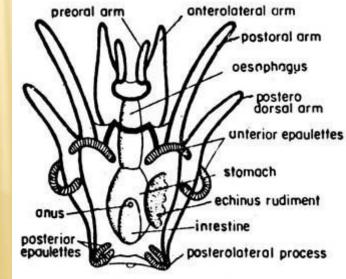
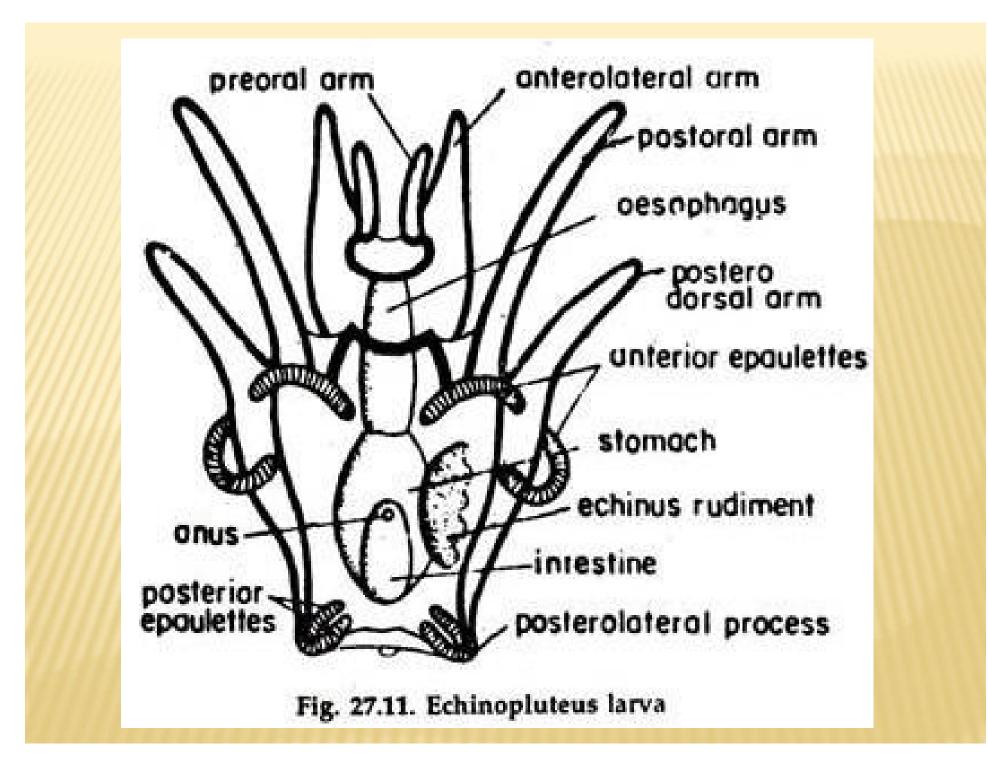



Fig. 27.11. Echinopluteus larva

AURICULARIA LARVA

- It is the first larval form of Holothuroidea.
- It is transparent, free swimming, pelagic larva of about 0.5-1 mm in length.
- Arms are absent. Ciliated bands are well developed.
- It swims about by a ciliated band which forms pre oral loop and an anal loop.
- Alimentary canal is developed which opens with mouth and ends with anus.
- Internally the larva has a curved intestine with sacciform stomach

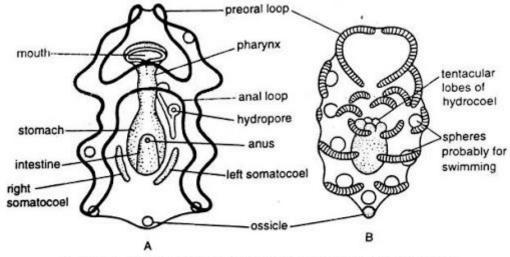


Fig. 27.12. A. Auricularia larva B. Transitional stage from Auricularia to Doliolaria larva

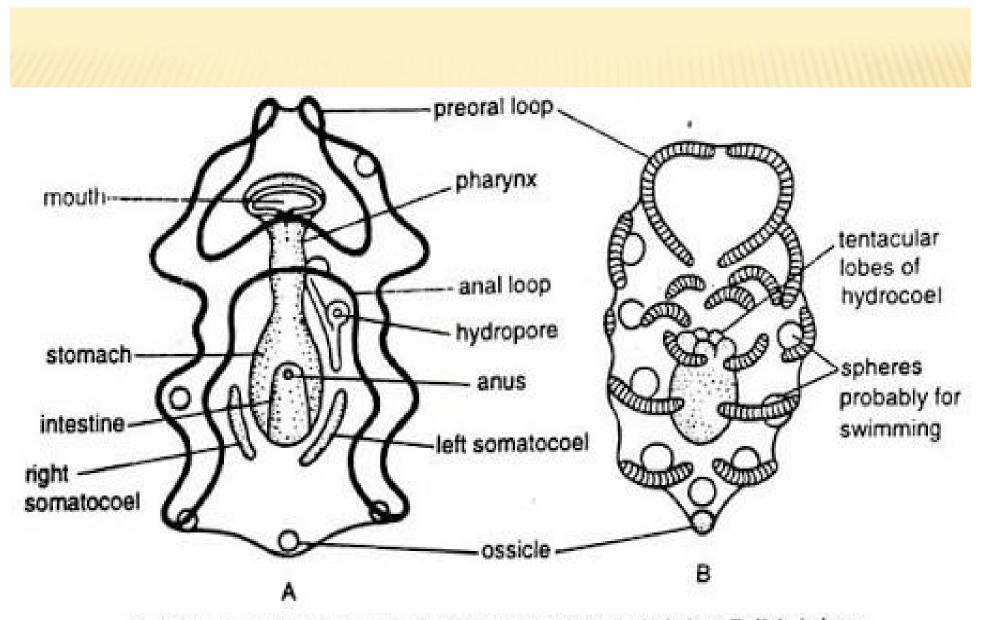


Fig. 27.12. A. Auricularia larva B. Transitional stage from Auricularia to Doliolaria larva

DOLIOLARIA LARVA

- It is the second larval form of Holothuroidea.
- It is a transitional stage from Auricularia larva.
- It is barrel shaped with continuous ciliated band which breaks into three to five flagellated rings.
- Mouth is shifted to anterior and anus to posterior pole.
- Metamorphosis is gradual, during which it acquires five tentacles and one to two functional podia.
- After appearance of more tentacles and podia, sea cucumber settles to the sea bottom and leads an adult mode of life.
- As such it is sometimes called Pentacula.
 In some cases, there is no Auricularia stage, the embryo directly develops into Doliolaria larva.

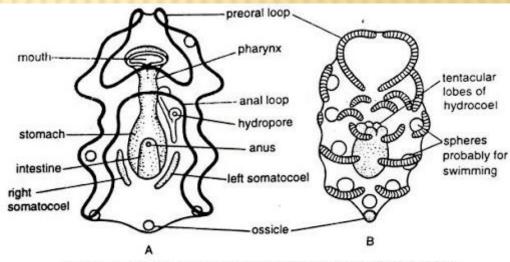
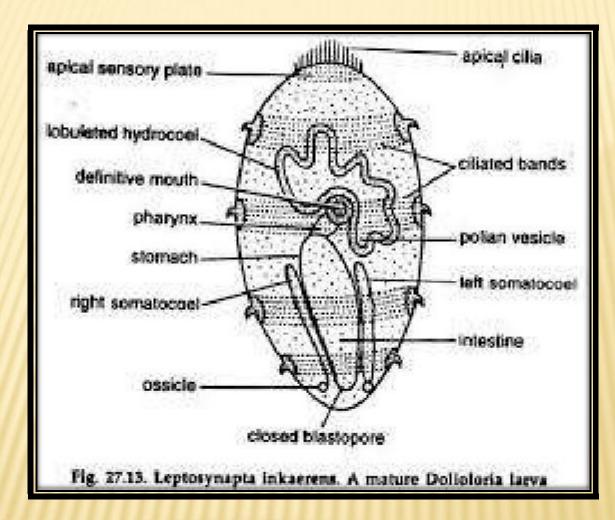
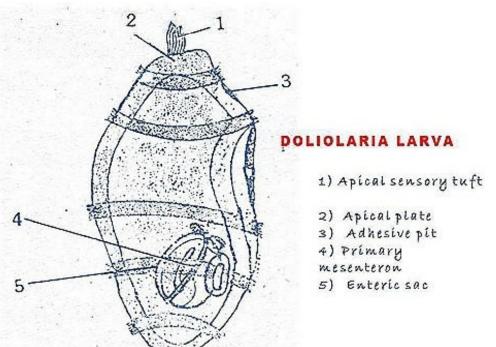
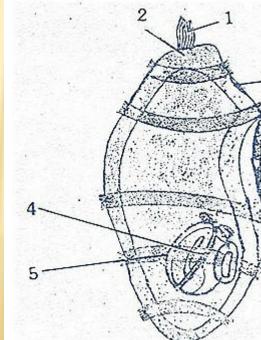




Fig. 27.12. A. Auricularia larva B. Transitional stage from Auricularia to Doliolaria larva



DOLIOLARIA LARVA

- It is the larval form of Crinoidea.
- It is a free swimming larva having four to five ciliated bands.
- It contains an apical tuft of cilia which will be sensory.
- On the mid ventral line, near apical plate, adhesive pit will be present over the first ciliated band.
- Between second and third ciliated band lies stomodeum or vestibule

- Skeleton also develops at this larval stage.
- After swimming for some time, it will develop a stalk.
- It is called Pentacrinoid larva.
- Larva now attaches itself and internal organs rotate to 90 degree from ventral to posterior position.
- Larva forms a stalk and is now called as Cystidean or Pentacrinoid larva.
- This after somtime metamorphoses into an adult.

DOLIOLARIA LARVA

1) Apical sensory tuft

- 2) Apical plate 3) Adhesive pit
- 4) Primary
- mesenteron
- 5) Enteríc sac

Pentacrinoid stage of *Antedon bifida*; a) arms: b) basals; r) radials; s) stalk Development of a Crinoid - A, morula; B, free larva, with bands of cilia; C, young crinoid.

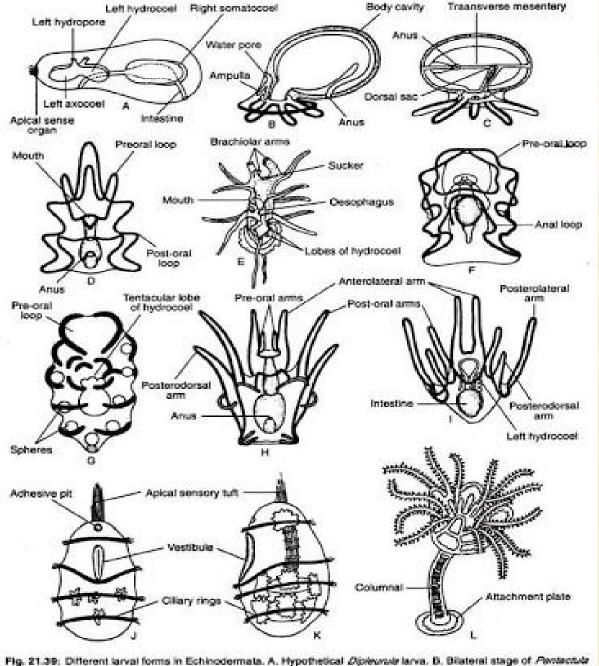


Fig. 21.39: Different larval forms in Echinodermata. A. Hypothetical Diplexinul larva. B. Bilaterial stage of Panlactula larva. C. Pantactula larva after torsion of radial position. D. Bipinnaria larva. E. Brachiolenia larva. F. Auricularialiana. G. Transitional stage from Auricularisto Dolibianislarva. H. Echinophiteus. I. Optiphiteus. J. Dolibianis or Vitellaria larva of Anterion. K. Late Dolibianis larva of Anterion. L. Pantacrinoid stage of Anterion.

HOMOLOGY AND PHYLOGENY OF ECHINODERM LARVAE

Except for the Crinoids, a sedentary group, the larvae of Asteroidea, Holothuroidea, Echinoidea and Ophiuroidea exhibit some fundamental resemblances:

- Having Pre-oral and Post-oral loops.
- Having V-shaped ciliated bands.
- Presence of gut with its divisions and openings.
- Coelom enterocoelic.

These are some common features indicating that they had a common ancestor.

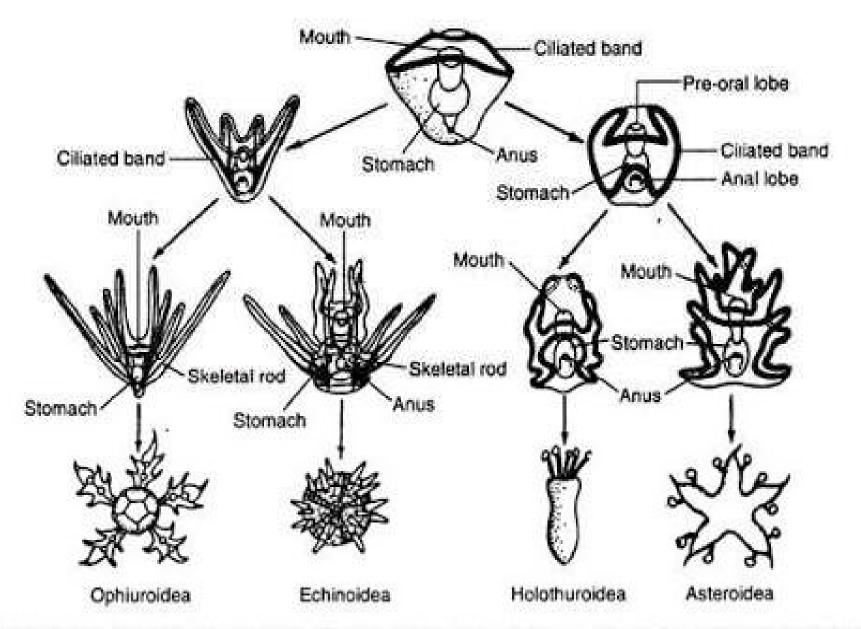


Fig. 21.33: Showing the development of radially symmetrical adult echinoderms from the bilaterally symmetrical larva (after Parker and Haswell). Note that (i) the Ophiuroidea and Echinoidea are closely related and (ii) Holothuroidea and Asteroidea are closely related. Hypothetical basic larval ancestral forms are:

1. Dipleurula type ancestral larva

2. Pentactula type

ancestral larva

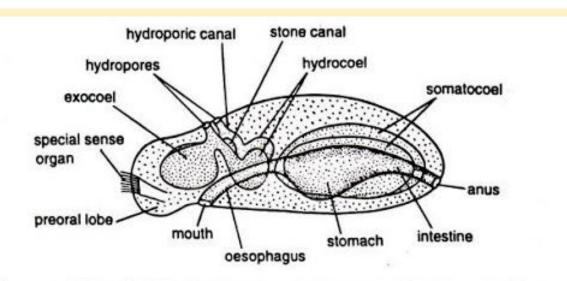


Fig. 27.14. Dipleurula larva. Diagrammatic reconstruction of hypothetical ancestor

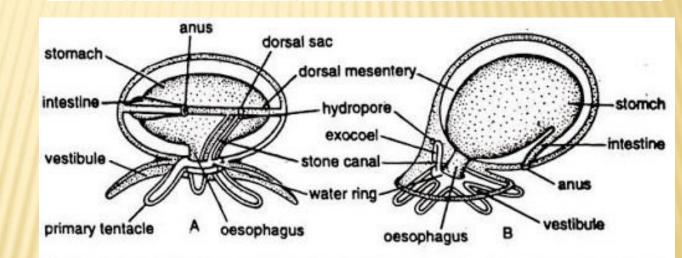


Fig. 27.15. Pentactula (ancestor larva) A. Bilateral form. B. Radial condition after torsion

SIGNIFICANCE OF ECHINODERM LARVAE:

- 1. Bilateral larvae are transformed in radically symmetrical adult.
- 2. Deuterostomes

VISIT TO A POULTRY FARM

Name:-Munmun Chosh University Roll: - 200611010011, Year:- 37d Registration No: - 20200100 4851

Session: - 2022-23

BSC-gen-5th sem

rage No. OI Date Those (Introduction); man aug sich ougunungen andre watere anco entra anyce à caras nevà suce à somuno anya cas הוצוותים שטי או האואי - אמונה אוצ ערווווים אוואי crawel strunge any cores our a cul curry ar Les and a contrue mentel such ones and medio age survey us med andre who is ever any met acu' (Rupping (Lourge) in buch out for another and and a secure and any and the mun . Dun 221 area comund . acu. cound my agree & aven's th' - nou - story a just - 852y ride and na , andirer Sorra : enconse Ermi , and mor coul: ander . टछाती : आपल्डिय देगाल्लाने ! ति उलिंग्रिय Ercont, Autors repure marger & jer. asi , anternomia remute : " ne i Aunt and i carenterer Survey B. Duger Course · menne morto current carried coursed, core oursant · archasty fiero artugi zeriu audia aucu Ende unegeum, exiginate Andrea Lang, ac Teacher's Signature

0.

ACM and start aurio erses gicher and and all ares commentares a conframer. To:30 serie ande anono Erdenia aulo yester ourses semi Levence coulde gene commany and story ensiego Asistant Desusio on. Prabin sengupta. האה העובדים בגיבון אותה שהקולים אואו פיאן שואובדים susten engine mohema no annor enong mart Man Kund ENVER shared of a started as a she KWNOU + manue zuzeen sun heze, agong zalaberra norazi and 18 we who fulge case outone can't the abus dance were of - 3 we we can succe we she is i जामान असम द्राजित ईतकिछेटवर्छन द्रात्रित पारलाखारव eramen abas de tigen yer but the atter atter core dery's crawer . censor el'orge surred הקינדיות שבטבש אויבובווידוידוטוא. aging on, prabin sengupta sin annich o comments any the Alon on , lecerosturste , Legestur zale mater oucused anofferna . abulo ourder Sche Borg ourses steb create ab warg RD° sladdens out sour yours! Teacher's Signature .

210 10/11/2035 auria Davie Mangelineria 210220 a la sul

NO.

marie en (sammand):

Hend of the Department

Page No. 03 Date. 210 17/11/2022 Course Jane 2 200 2 200 arstry James Consult टनाम्हालका जाह जाहतादन् उहिपाझूल दिल द्रांग खज्तत east' rous All's oursile wis oursal coulor area stary grick preeding centure a couled concert Engrica brings forma Duck breeding centre ao Ast. proffesors pro, R.S Baretojee. िनि जार मार देख मारत आधुर्कि नामर जमा जार के amplema me courses eneorge son stang to granter, abuil oursibe The segen counter and first succes arcuneter angland abourse Sur alisteden zer wewer was reser and se coen помо сныле зидорсани сысци лизео сысле снениии. कि इनकिछटकान निक्रिय आटक 28 मिन, आहाएन० न माझ ma concred grow less end, enaig goured ancolour, merer redro versa' sure faller and reden's reden's red tives strong and , euros esta escurere reales marcarel abourse abus our be course enclos and wind a cus honson RD Teacher's Signature ...

Teacher-in-charge

NO.

commences and salas emerio

Report (1) ezus meder 1 22022 estory arris. L'an errer holde 'Twy beerton grand mere wee ercure eagers and and westers and muser' will cards and one sources and waster wanter a family a careeder the concerts Allered energen reco det reco were real der gillo it's certa delle exerce curra lis acus & 21 - Bis and rend con come win ' 3-1824 Bis wy & contin acu par 12 zuller ala con a la con ander ander al con curris acui successo in mma my Co , coo o lon muio my Co, - caso i asse deriver case et àzy wewer as a res' i est as ut loco aunuro ande acua enal, caren superino wurd's and TC , XIO, acc glas 14, awind achura 25. ש נבירושותים מצינם: - . פאורעו שנפער אל בינקוטע דובל מג aucos Megnerals and such acor no Loco aco cuare 22' neddesencarea arewienca der gibe wigned Liben zich ulgereio astreet whe sh' reader the sala cucale wine estrue 22 1 curris calo and achrealing councerster remencesonder, era, demeder rat and the aucaro der api a anerio causar a concor energe ascà and whe are and in the construction and and and and esticue dri l'anter abus 10-12 cur unal 20 currero este val 221 - 22 mois engosilo axor 2701 arconcered besicus and 100 2 cm muno moran. an a assessment

Teacher's Signature

ŝ

cardeling

Department of Z Gushkara Mahavi

Teacher's Signature

Gustikers Mahavin

TORD

Page No. 05 Date. = ours sous mugh ou madericus sources. = redo onewer onewed acher the stort crest ruga करि क किस कृहताय कांध करेंगी , क्या 3 सरीहर रंग सार्थ्य केल्छिस anemio and the war way wand and bene a here a here when when the ser and and the sear as when a short a contra 23 TILES ENEWID ALTINDE 231 ma cound a meda wich and su oucer were la cas enter wer wier solo and recours for wer and wer alouis Toole would all were ald states dea 1 acculousa a marcho were withe mboxulo where acar a ares ourno ritigo Kitte curre Botto curre Low She derecte situes about de estednight to sue conco sue second to actor and 21242 press act with a week as care and a week corea ten mieco xão meo ששינשים , ששירה בחים שוניובים ישוטות לאורהין הווחות איוחות while allotter alle all al sature a maine a surred and yen are a san sulle and rear or and and minus 2000 surgers and and and an us and erasie 221' syrauceu & zuden asize wind and chais Bennald d'n curred auction - Lais no & 100 wells of al 4 er der 5 wind 32-20 asinto a boules reverse i resure 20 the asinto - 20 mainer 30 mainer 0 3 21 24 grea 10 mainer ar winder 100 2001

ount arerio

Leerb

Page No. 06 Date. Question & ferral car co suchered of areas 100 reduces and charles 221 100 artecia were and areas roo where and eren 32' To dicter Too of which Dan TO menes Tubeases so of astres and constants · Carrie à Acrede ele mouceu cribe restruce to arte acui leasurendo aca 103 ma ano and concor 203 Leces - 5 & ca maca , ed on ver cus ais count reber our יסוטובט אבטי • ALALCOO REPARTS - QUAR 2-3 FRA CER STALO - CO NO HEAL erais sh' edu yy corres arais wills reco evensus a Mory a suil's currie Mary and courses and currie छित्र एकन्न न्युगन्न त्र्याट्ठ किट्ठ र्रदय, · Caller of Ballone man Lord min, - marter o condensed them ound and the grange of the grand and and and יותראר אבשנה • - पहालिए : - पहालिए - आटल मूंर्ट्य रे , - बार्र्याए जहम आर्र्य्य पु דו הארט בעבא בעבא בעובבינא נושא תובט בעמאי בוני * אושראותרפן בובאונקבתם שחתוא שבאים ל צאוצאה אלם או aid autre - (1) ausucha heedid ersel stort at as ere Dar alander 20 - 80 m ancher (2) exicts auxies low wind lo euro aucona Jorilà andara cup aucup ecui (3) averes de ouveres élevere que ver aut מועצוות עונטוק - האבש בשקט נווק או אבו הבש ישונשות ארנעניים to colo ander dear Teacher's Signature

Page No. 10 Date. مدهدهم مجامعات ourreno moggelo agrio Feld Visia cricos ausia areas are giber encored ad and outhor swellerra outerer's woughten's a ourserence peparot ment las anty aconstances, while oursuch's acoustered survey archety ट्यू विख्यक्ष्यक्ष्य देखुल्ट युव्धादवुव काहतू sur andition europeanced on myeria and anostate courses a anterio and Dro Prabino sengunatare Bro Ros. Banerojee ersusin si aner deringerer worre AND Teacher's Signature ..

Project Title: Glimpses of India's Wildlife in context of world

- The natural wealth of the Indian subcontinent has remained unique, mysterious and fascinating for nature lovers.
- India's wildlife is both rich and varied. More than 4% of India's land is under forest cover. Variety of India's wildlife can be seen in the 90 National Parks, 482 wildlife sanctuaries and 23 tiger reserves established by the Government of India in an attempt to conserve this vital resource.
- According to one study, India along with 17 mega diverse countries is home to about 60-70% of the world's biodiversity.
- India, lying within the Indomalaya eco-zone, is home to about 7.6% of all mammalian, 12.6% of avian, 6.2% ofIndia, lying within the Indomalaya ecozone, is home to about 7.6% of all mammalian, 12.6% of avian & 6.2% of reptilian.
- General Additional Section 2015 For Wildlife Enthusiasts, India is the perfect place to see wild animals in their natural habitat.

Endangered Species

- Asiatic Black Bear
- Asiatic Lion
- □ Asiatic Wild Dog/ Dhole
- Banteng
- **Blue Whale**
- **Capped Leaf Monkey**
- **Chiru / Tibetan Antelope**
- Wild Cat
- **Given Series** Fin Whale
- **Ganges River Dolphin**
- **Golden Leaf Monkey**
- **Great Indian Rhinoceros**
- Hispid Hare
- □ Indian Elephant or Asian Elephant

- **Indus River Dolphin**
- Andaman Shrew
- Asian Arowana
- **Galaxies And Stag / Hangul**

Conservation of the Species:

- □ In recent decades, human encroachment has posed a threat to India's wildlife.
- Since India is home to a number of rare and threatened animal species, wildlife management in the country is essential to preserve these species.
- Article 48 of the Constitution of India specifies that, "The state shall endeavour to protect and improve the environment and to safeguard the forests and wildlife of the country" and Article 51-A states that "it shall be the duty of every citizen of India to protect and improve the natural environment including forests, lakes, rivers, and wildlife and to have compassion for living creatures."
- The system of National Parks and protected areas, first established in 1935, was substantially expanded.
- □ In 1972, India enacted the Wildlife Protection Act
- □ In 1972, Project Tiger & Project Elephant started in 1992
- □ Further federal protections were promulgated in the 1980s.
- □ Forest Rights Act was established in 2008
- □ Along with over 500 wildlife sanctuaries, India now hosts 15 biosphere reserves & 25 wetlands.
- India contains 172, or 2.9%, of International Union for the Conservation of Nature and Natural Resources (IUCN)-designated threatened species. These include the Asiatic lion, the Bengal tiger, and the Indian white-rumped vulture.
- □ The most endangered Indian top predator of 2010, the dhole is on edge of extinction. Less than 2500 members of the species remain in the world.
- □ There are 39 Project Tiger wildlife reserves in India covering an area more than of 37,761 km².

Conservation International (conservation.org) defines 35 biodiversity hotspots — extraordinary places that harbor vast numbers of plant and animal species found nowhere else. All are heavily threatened by habitat loss and degradation, making their conservation crucial to protecting nature for the benefit of all life on Earth.

Biodiversity Hotspots

North and Central America

- 1. California Floristic Province
- 2. Caribbean Islands
- 3. Madrean pine-oak woodlands
- 4. Mescamerica

South America

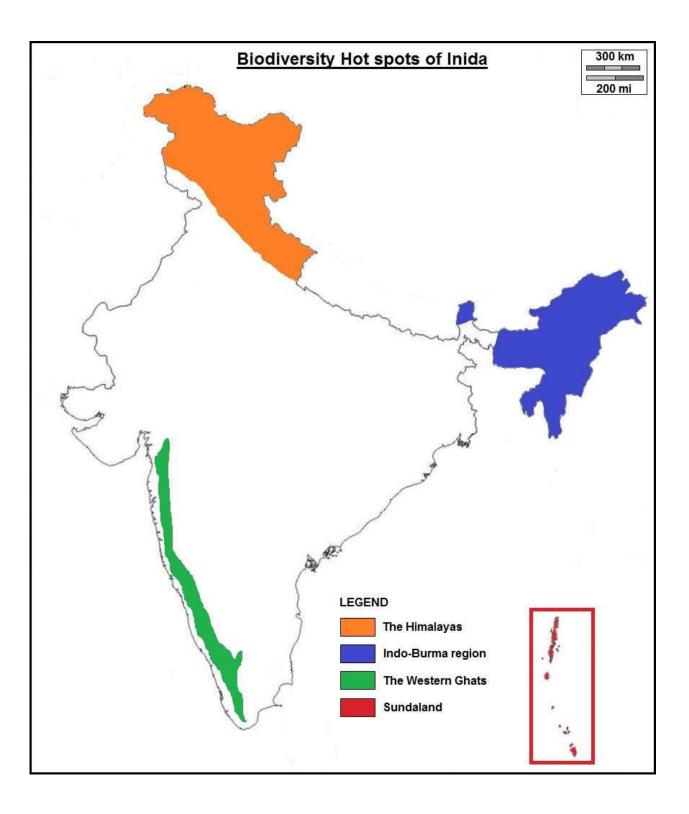
- 5. Atlantic Forest
- 6. Cerrado
- Chilean Winter Rainfall-Valdivian Forests 7.
- 8. Tumbes-Chocó-Magdalena
- Tropical Andes 9.

Europe and Central Asia

- 10. Caucasus
- 11. Irano-Anatolian
- 12. Mediterranean Basin
- 13. Mountains of Central Asia

Africa

- 14. Cape Floristic Region
- 15. Coastal Forests of Eastern Africa
- 16. Eastern Afromontane
- 17. Guinean Forests of West Africa
- 18. Horr of Africa
- 19. Madagascar and the Indian Ccean Islands
- 20. Maputaland-Pondoland-Albany
- 21. Succulent Karoo


South Asia

- 22. Eastern Himalaya, India
- 23. Indo-Burma, India and Myanmar
- 24. Western Ghats & Sri Lanka

South East Asia and Asia-Pacific

- 25. East Melanesian Islands
- 26. New Caledonia
- 27. New Zealand
- 28. Philippines
- 29. Polynesia-Micronesia
- 30. Southwest Australia
- 31. Sundaland
- 32. Wallacea

- 33. Japan
- 34. Mountains of Southwest China
- East Asia

1. Himalaya

http://bsienvis.nic.in/files/Biodiversity%20Hotspots%20in%20India.pdf

Species	diversity	and	endimism
~			

Taxonomic Group	Species	Endemic Species	Endemism (%)
Plants	10,000	3,160	31.6
Mammals	300	12	4.0

Birds	977	15	1.5	
Reptiles	176	48	27.3	
Amphibians	105	42	40.0	
Freshwater Fishes	269	33	12.3	

Rhododendron

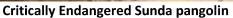
1. Lammergeier 2. Black Eagle 3. Northern Goshawk 4. Tibetan Partridge

1. Back-Striped Weasel 2. Namdapha Flying Squirrel 3. Red Panda 4. Takin

2. Indo-Burma

Species diversity and endemism

Taxonomic Group	Species	Endemic Species	Endemism (%)
Plants	13,500	7,000	51.9
Mammals	433	73	16.9
Birds	1,266	64	5.1
Reptiles	522	204	39.1
Amphibians	286	154	53.8
Freshwater Fishes	1,262	553	43.8



Orchid

Red-headed vulture

the saola or "Asian unicorn"

Taxonomic Group

Species

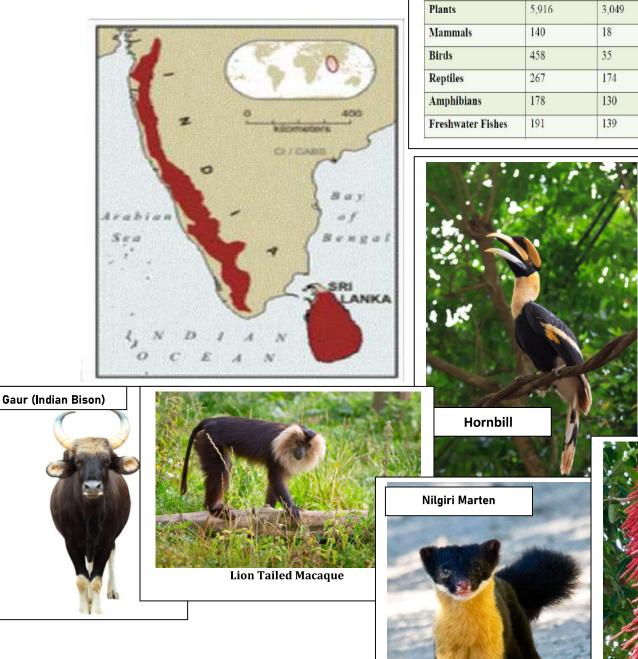
Cambodia's national bird, the giant ibis

Endemic Species

Endemism (%)

51.5

12.9


7.6

65.2

73.0

72.8

3. Western Ghats and Sri Lanka

Baccaurea courtallensis

4. Sundaland

Taxonomic Group	Species	Endemic Species	Endemism (%
Plants	25,000	15,000	60.0
Mammals	380	172	45.3
Birds	769	142	18.5
Reptiles	452	243	53.8
Amphibians	244	196	80.3
Freshwater Fishes	950	350	36.8

Rat-Eating Pitcher plant

Sulawesi Bear Cuscus

Mega diversity countries

BIGGEST THREATS TO BIODIVERSITY

1. CLIMATE CHANGE

Increase in the temperature of the atmosphere has major effects on the environment such as the seasons, rising of the sea levels, and glacial retreats.

2. HABITAT LOSS & DEGRADATION

Habitat loss may either be caused by natural events like natural calamities and geological events or anthropogenic activities like deforestation and man-induced climate change.

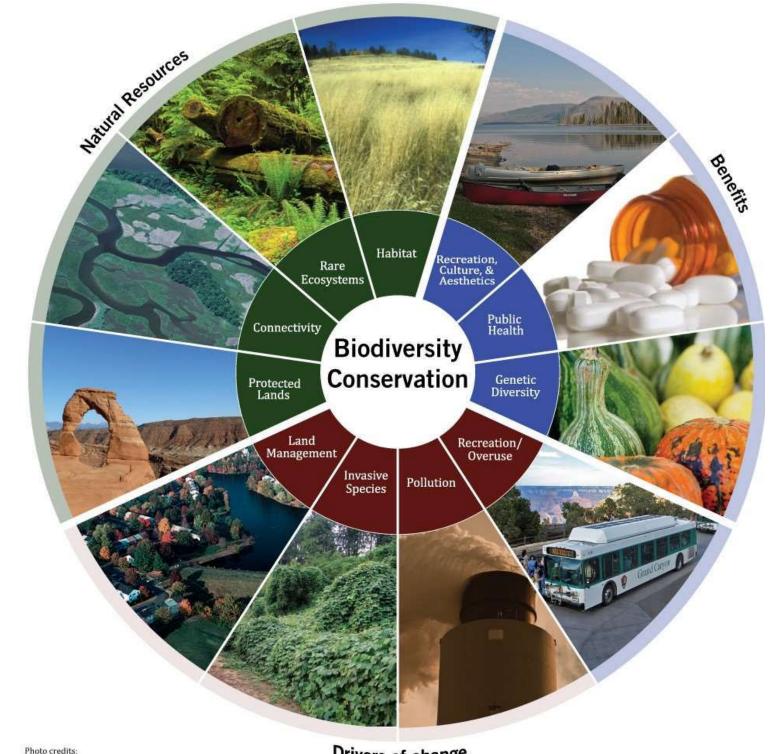
3. POLLUTION

Be it water, air, or land pollution, all forms of pollution appear to be a threat to all life forms on Earth.

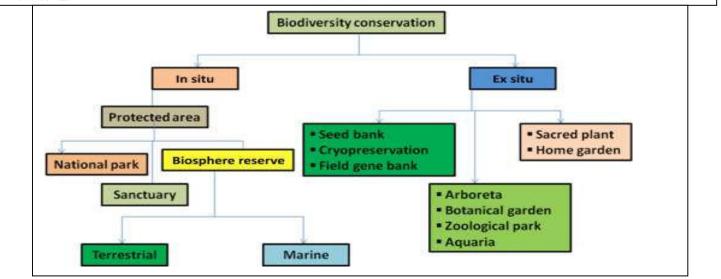
4. INVASIVE SPECIES

An exotic or unnatural species can be any kind of organism that has been introduced to a foreign habitat. This introduction can cause major threats to the native species.

5. OVEREXPLOITATION


Overexploitation refers to the act of over-harvesting species and natural resources at rates faster than they can actually sustain themselves in the wild.

6. OTHER POTENTIAL THREATS


Epidemics and infectious diseases of wildlife such as Ebola virus disease, infectious bursal disease, and flu affect wildlife and biodiversity.

Source: https://www.bioexplorer.net/threats-to-biodiversity.html/

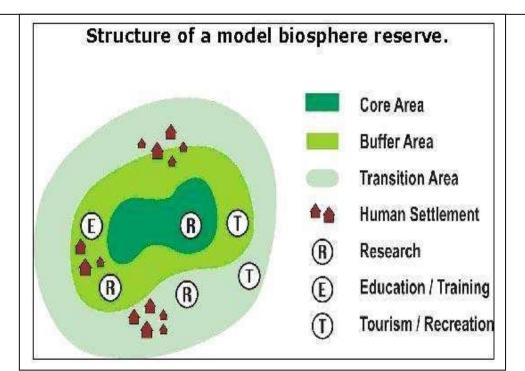
Drivers of change

i. No	Name of State	National park	rear or notification	Area (in km ²	
1	Andhra Pradesh	Papikonda	2008	1012.8588	
2		Rajiv Gandhi	2005	2.3952	
	2	(Rameswaram)			
3		Sri Venkateswara	1989	353.62	
⁴ Arunachal Pradesh		Mouling	1986	483	
5		Namdapha	1983	1807.82	
6	Assam	Dibru-Saikhowa	1999	34	
7	2	Kaziranga	1974	858.9	
8	6. G	Manas	1990	50	
9	~	Nameri	1998	20	
10	6. Q	Rajiv Gandhi (Orang)	1999	78.8	
11	Bihar	Valmiki	1989	335.6	
12	Chhattisgarh	Guru Ghasidas (Sanjay)	1981	1440.7	
13	8	Indravati (Kutru)	1982	1258.3	
14		Kanger Valley	1982	20	
15	Goa	Mollem	1992	10	
16	Gujarat	Blackbuck (Velavadar)	1976	34.5	
17		Gir	1975	258.7	
18		Marine (Gulf of Kachchh)	1982	162.8	
19		Vansda	1979	23.9	
20	Haryana	Kalesar	2003	46.8	
21		Sultanpur	1989		
22	Himachal Pradesh	Great Himalayan	1984	754	
23	Tudoon	Inderkilla	2010	ç	
24		Khirganga	2010	70	
25		Pin Valley	1987	67	
26		Col. Sherjung Simbalbara	2010		
27	Jharkhand	Betla	1986	226.3	
28	Karnataka	Anshi	1987 417		
29	NE-C-1988.09890-09990-09990-00-0	Bandipur	1974		
30		Bannerghatta	1974 2		
31	6	Kudremukh	1987	600.5	
32	i contra sua	Nagarahole (Rajiv Gandhi)	1988	643.3	
33	Kerala	Anamudi Shola	2003	7	
34		Eravikulam	1978	ç	
35		Mathikettan Shola	2003	12.8	
36		Pambadum Shola	2003	1.3	
37		Periyar	1982	35	
38		Silent Valley	1984	89.5	
39	Madhya Pradesh	Bandhavgarh	1968	448.84	
40		Dinosaur Fossils	2011	0.89	
41		Fossil	1983	0.2	
42		Pench	1975	292.85	
43		Kanha	1955	941.79	
44		Kuno	2018	748.76	
45		Madhav	1959	375.2	
46	8	Panna	1981	542.6	
47		Sanjay	1981	464.64	
48	8	Satpura	1981	528.72	
49		Van Vihar	1979	4.45	

50	Maharashtra	Chandoli	2004	317.67
51	0	Gugamal	1975	361.28
52		Nawegaon	1975	133.88
53		Pench (Jawaharlal Nehru)	1975	257.26
54		Sanjay Gandhi (Borivilli)	1983	86.96
55		Tadoba	1955	116.55
56	Manipur	Keibul-Lamjao	1977	40
57		Shiroi	1982	100
58	Meghalaya	Balphakram	1986	220
59		Nokrek Ridge	1997	47.48
60	Mizoram	Murlen	1991	100
61		Phawngpui (Blue Mountain)	1992	50
62	Nagaland	Intanki	1993	202 02
63	Odisha	Bhitarkanika	1988	145
64		Simlipal	1980	845.7
65	Rajasthan	Desert	1992	3162
66		Keoladeo Ghana	1981	28.73
67		Mukundra Hills	2006	200.54
68		Ranthambhore	1980	282
69		Sariska	1992	273.8
70	Sikkim	Khangchendzonga	1977	1784
71	Tamil Nadu	Guindy	1976	2.7057
72		Gulf of Mannar Marine	1980	526.02
73	2 J	Indira Gandhi (Annamalai)	1989	117.1
74		Mudumalai	1990	103.23
75		Mukurthi	1990	78.46
76	Telangana	Kasu Brahmananda Reddy	1994	1.425
77		Mahaveer Harina Vanasthali	1994	14.59
78	÷.	Mrugavani	1994	3.6
79	Tripura	Clouded Leopard	2007	5.08
80		Bison (Rajbari)	2007	31.63
81	Uttar Pradesh	Dudhwa	1977	490
82	Uttarakhand	Corbett	1936	520.82
83		Gangotri	1989	2390.02
84	8	Govind	1990	472.08
85	12	Nanda Devi	1982	624.6
86	8	Rajaji	1983	820
87	8	Valley of Flowers	1982	87.5
88	West Bengal	Buxa	1992	117.1
89		Gorumara	1992	79.45
90		Jaldapara	2014	216.34
91	<u>a</u>	Neora Valley	1986	159.8917
92		Singalila	1986	78.6
93	<u></u>	Sunderban	1984	1330.1
94	Andaman & Nicobar Islands	Campbell Bay	1992	426.23
95		Galathea Bay	1992	110
96		Mahatama Gandhi Marine (Wandoor)	1983	281.5
97		Mount Harriett	1987	46.62
98		Rani Jhansi Marine	1996	320.06
99		Saddle Peak	1987	32.54
100	Jammu &	City Forest (Salim Ali)	1992	9.07

		Source	National Wildlife Database, \	Nildlife Institute of Indi
104	Ladakh	Hemis	1981	3350
103		Kishtwar High Altitute	1981	2191.5
102		Kazinag	2000	90.88
~~~~		Dachigam	1981	141

#### **BIOSPHERE RESERVE**


Biosphere reserves are sites established by countries and recognized under UNESCO's Man and the Biosphere (MAB) Programme to promote sustainable development based on local community efforts and sound science. The programme of Biosphere Reserve was initiated by UNESCO in 1971. The purpose of the formation of the biosphere reserve is to conserve in situ all forms of life, along with its support system, in its totality, so that it could serve as a referral system for monitoring and evaluating changes in natural ecosystems. The first biosphere reserve of the world was established in 1979, since then the network of biosphere reserves has increased to 631 in 119 countries across the world (Read more at https://en.unesco.org/biosphere).

Presently, there are 18 notified biosphere reserves in India.



	5. No.	Name	Date of Notification	Area (in km²)	Location (State)
1	L	Nilgiri	01.09.1986	5520 (Core 1240 & Buffer 4280)	Part of Wayanad, Nagarhole, Bandipur and Madumalai, Nilambur, Silent Valley and Siruvani hills (Tamil Nadu, Kerala and Karnataka).
2	2	Nanda Devi	18.01.1988	5860.69 (Core 712.12, Buffer 5,148.570) & T. 546.34)	Part of Chamoli, Pithoragarh, and Bageshwar districts (Uttarakhand).
	3	Nokrek	01.09.1988	820 (Core 47.48 & Buffer 227.92, Transition Zone 544.60)	Part of Garo hills (Meghalaya).
4	1	Great Nicobar	06.01.1989	885 (Core 705 & Buffer 180)	Southern most islands of Andaman and Nicobar (A&N Islands).
5	5	Gulf of Mannar	18.02.1989	10,500 km2 Total Gulf area (area of Islands 5.55 km2)	Indian part of Gulf of Mannar between India and Sri Lanka (Tamil Nadu).
6	5	Manas	14.03.1989	2837 (Core 391 & Buffer 2,446)	Part of Kokrajhar, Bongaigaon, Barpeta, Nalbari, Kamprup and Darang districts (Assam)
7	7	Sunderbans	29.03.1989	9630 (Core 1700 & Buffer 7900)	Part of delta of Ganges and Brahamaputra river system
					(West Bengal).
8		Simlipal	21.06 <mark>.</mark> 1994	4374 (Core 845, Buffer 2129 & Transition 1400	Part of Mayurbhanj district (Orissa).
9		Dibru-Saikhowa	28.07.1997	765 (Core 340 & Buffer 425)	Part of Dibrugarh and Tinsukia Districts (Assam)
10	0	Dehang-Dibang	02.09.1998	5111.50 (Core 4094.80 &Buffer 1016.70)	Part of Siang and Dibang Valley in Arunachal Pradesh.
					Parts of Betul, Hoshangabad and

11	Pachmarhi	03.03.1999	4926	Parts of Betul, Hoshangabad and Chindwara districts of Madhya Pradesh.
12	Khangchendzonga	07.02.2000	2619.92 (Core 1819.34 & Buffer 835.92)	Parts of Khangchendzonga hills and Sikkim.
13	Agasthyamalai	12.11.2001	1828	Neyyar, Peppara and Shendurney Wildlife Sanctuaries and their adjoining areas in Kerala.
14	Achanakamar - Amarkantak	30.3.2005	3835.51 (Core 551.55 & Buffer 3283.86)	Covers parts of Anupur and Dindori districts of M.P. and parts of Bilaspur districts of Chhattishgarh State.
15	Kachchh	29.01.2008	12,454 km2	Part of Kachchh, Rajkot, Surendra Nagar and Patan Civil Districts of Gujarat State
16	Cold Desert	28.08.2009	7770	Pin Valley National Park and surroundings: Chandratal and Sarchu&Kibber Wildlife Sancturary in Himachal Pradesh
17	Seshachalam Hills	20.09.2010	4755.997	Seshachalam Hill Ranges covering parts of Chittoor and Kadapa districts of Andhra Pradesh
18	Panna	25.08.2011	2998.98	Part of Panna and Chhattarpur districts in Madhya Pradesh



#### Bandipur & Nagarhole National Parks, Karnatak

- ✓ Special Features: Veritable paradise for wildlife. Moderate climate and diverse geographical features. Dry & tropical mixed deciduous forests
- ✓ Location: Situated within Chamarajanagar
- ✓ district of Karnataka, halfway down
- ✓ the Mysore-Ooty highway.
- ✓ Prime Attractions:
- ✓ Year of Designation as National Park:

In 1973, it became one of the first of India's Tiger Reserves.



## **Corbett National Park**

- Special Features: First national park of India. Hilly & reverie , valleys, plateaus and ravines.
   Deciduous forests consisting 110 tree species. Lower areas are mainly populated by Sal, Pine,
   Shisham and Khair trees.
- ✓ Year of Designation as National Park:

Formerly known as Hailey National Park,

established by Jim Corbett in 1936

- ✓ Location : 63 Kms southwest of Nainital, Uttaranchal
- ✓ Area : 52,082 hectares
- ✓ Prime attractions : Tigers, Leopards, Crocodiles,

Sloth Bear, Himalayan Black Bear, Dhole, Jackal,



Yellow Throated Martem, Himalayan Palm Civet, Indian Grey Mongoose.

#### Kanha National Park

- ✓ Special Features: The number of tigers has doubled and barasingha have crossed the 450 mark. Deciduous forests, surrounded by valley & plateaus.
- ✓ Year of Designation as National Park:

As National Park in 1955 &

as Tiger Reserve in 1975

✓ Location : Forests of the Central high

lands of Mandla and Balaghat districts

in Madhya Pradesh

✓ Area: 940 sq. kms.



Prime attractions : Barasingha, cheetal sambar, black duck, barking deer, gaur, hog deer, chausingha, bison, boar, tiger, leopard, hyena and wild dog. Nearly two hundred bird species such as storks, teals, pintails, egrets, peafowl, partridges, doves, pigeons, cuckoos, eagles, kites, etc.

#### **Kaziranga National Park**

- ✓ **Special Features:** Listed in World Heritage Site
- ✓ Year of Designation as National Park: 1985
- ✓ Location : Districts of Golaghat & Nagaon in Assam
- ✓ Area: 429.93 sq.kms with an additional area of 429.40 sq.kms
- Prime attractions : One Horned Rhinoceros, Asiatic elepahnt, Asiatic wild buffalo & Royal Bengal Tiger.

## **Dudhwa National Park**

✓ Special Features: Forty-seven species of mammals are

found at Dudhwa; of these thirteen species are endangered.

The only place in the world inhabited by 5 species of deer

✓ Year of Designation as National Park: 1st February 1977

 Location : Near Palia in Lakhimpur-Kheri District in foothills of Himalaya in Terai region in Uttar Pradesh





- ✓ Area : 490 sq.kms
- Prime attractions : Hog deer, swamp deer, barking deer, sambhar, wild boar, leopard, tiger, rhino.

# **Gir National Parks**

✓ Special Features: It's ecosystem nurtures 450

species of plants, 350 species of birds,

32 mammal species & 24 reptiles

- ✓ Year of Designation as National Park: Established in 1965
- ✓ Location : Gir, 42 kms from Junagadh in Gujarat
- ✓ Area : 1421.13 sq. kms
- ✓ **Prime attractions :** Chital, chowsingha, Asiatic Lions, Leopard, Lion, sambhar, bluebul

## **Sunderbans National Park**

✓ Special Features: A UNESCO World Heritage site,

one of the world's largest delta & the mangrove

- ✓ Year of Designation as National Park:
- ✓ Location : Piyali, West Bengal
- ✓ Area: 1330.10 sq. kms
- Prime attractions : Bengal Tiger, Ridley Sea Turtle, porpoise, wild boar, pangolin, Gangetic dolphin.

## Some of the Bird Sancturies in India

- **Keoladeo National Park/Bharatpur Bird Sanctuary:**
- ✓ Special Features: Designated as UNESCO World Heritage Site in 1985
- ✓ **Location:** Bharatpur, Rajasthan
- ✓ Area: 29 sq. kms

Prime attractions: Sambar, Chital, Nilgai, Boar, Migratory Birds

Kumarakom Bird Sanctuary







- ✓ Special Features: Situated on the banks of Vembanad Lake. Famous for its avian population. Known as an ornithologist's paradise.
- ✓ Location : 12 kms. from Kottayam, Kerala
- ✓ Area: 14 acres
- ✓ **Prime attractions:** Siberian Cranes, Waterfowls, Cuckoos
  - Sultanpur Bird Sanctuary
- ✓ Special Features: Lush green lawns, trees, shrubs and masses of Bougainvillea.
- ✓ Location: Sultanpur, Haryana
- ✓ Area: 143 sq. kms
- ✓ **Prime attractions:** Migratory Birds, Kingfishers, Blue Bulls
- Thattekad / Salim Ali Bird Sanctuary
- ✓ Special Features: Situated on the banks of the Priver river
- ✓ Location : 13 kms. from Kothamangalam, Kerala
- ✓ Area: 25.16 sq. kms

Prime attractions : Rare Mottled Wood Owl, Spot-bellied Eagle Owl, Malayan Night Heron.

- Kaundinya Bird Sanctuary
- ✓ Special Features: Covered with rugged high hills and deep valleys. Two streams, the Kaigal and the Kaundinya flow through the sanctuary. The southern tropical type of forests.
- ✓ Location : 50 kms. from Chittor, Andhra Pradesh
- ✓ Area : 358sq. Kms
- ✓ Prime attractions : Cheetal, Four horned Antelope,

Sambhar, Mouse Deer, Hare, Porcupine, Wild boar, Jungle Cat, Jackal, Sloth Bear, Panther, Jungle Fowl,

Pea Fowls and Elephants.

- Kawal Sanctuary
- ✓ Special Features: Variety of flora including dry deciduous teak forest and bamboo trees.







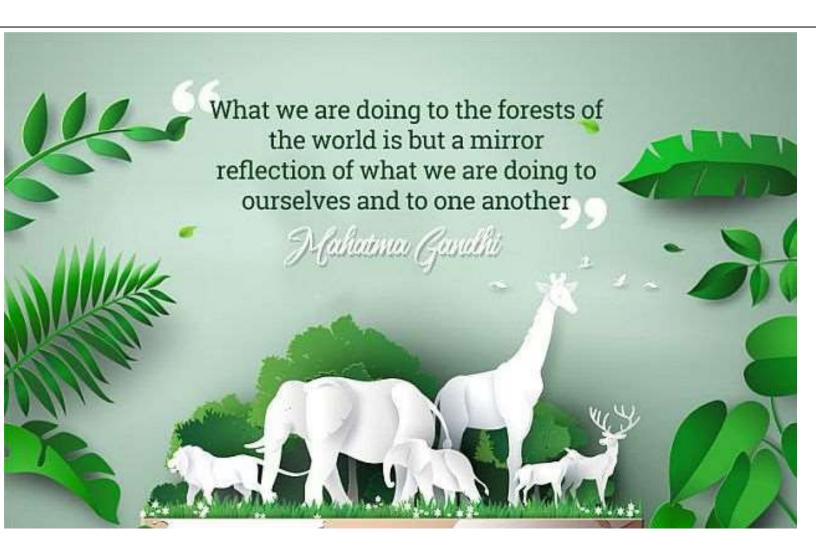
- ✓ Location : 50 kms. from Mancherial, Andhra Pradesh
- ✓ Area: 893sq. Kms

**Prime attractions :** Sloth Bear, Panther, Tiger and variety of birds like Peacocks, Patridges, Quails, Vultures, Eagles, Kites, Owls, Mynas, Pigeons, Tree - pies, Kingfishers.

#### CONCLUSION

It will be worthwhile to mention that in the 31st meeting of the Standing Committee for National Board for Wildlife (NBWL), held between August 12-13,, 2014, as many as 173 projects were listed for clearance from 24 states of India. A total of 130 projects were cleared, but were eventually struck down by the Supreme Court of India on the grounds that the current constitution of NBWL is a violation of law (PA Update, 2014-15: 12-22). Again, in a single NBWL meeting, held on January 21, 2015, at least 34 project proposals, cutting across 12 states have been approved; including those for road, rail, oil drilling, pipeline, canal construction–all being within the declared boundary of 27 wildlife sanctuaries, four national parks, one tiger reserves and two bird sanctuaries, among others. All these projects involve diversion of forest land within 'Protected Area' for non-forestry purpose.

Besides, at least 15 proposals from 10 states got clearance for diversion of forest land within 10 km radius of national parks and wildlife sanctuaries, which according to EIA norm should not have been given permission. The range of projects included construction of jetty in water ways and highway on land, storage facilities, irrigation, canal construction, road, mining, thermal power, hydrocarbon exploration.


The gamut of development projects being cleared may be indicative of country's rapid growth, but it also poses a question—what is the future of wildlife in India? Thanks to illegal poaching, Sariskaand Panna tiger reserves in Rajasthan and Madhya Pradesh respectively were recently declared "tiger-less". Buxa Tiger Reserve in West Bengal also has no tiger now.A recent news on death of "lions" in large number in Gujarat attracted national media attention. Also the illegal poaching or human-induced deaths as witnessed in Manas Wildlife Sanctuary, causing decline in rhino population. But on the other hand, deliberate and predicted deaths of Indian Elephants on railway tracks in north Bengal. Stories of these deaths that were five times more since the railway line was broadened also attracted eyeballs. Has any action been taken to prevent such colossal loss of wildlife—legally or illegally? Very recently, Government of India had again cleared another railway project connecting North Bengal to Sikkim via Rongpo, diverting 86 ha of forests land. These wildlife species are all listed under Schedule I of Indian Wildlife Protection Act and should have been given highest protection status. Land is not the only place with wildlife crisis. Hundreds of dead sea turtles have recently been spotted on Odisha coast. It is alleged that uncontrolled trawling operation made the coast a cemetery for Olive Ridley turtles.

The 48 projects recommended for clearance in January 2015, if undertaken, will convert 2,144 ha of forest land within the Protected Area. But in some cases, forest area has not been clearly defined and maneuvered in such language as "afforestation of boundary of Protected Area for exclusion of part of limestone bearing mineral zone" in Kamur Wildlife Sanctuary, Bihar. The title at least does not indicate "what the limestone bearing area is" that is referred to within the sanctuary. In June 2015, NBWL had again cleared 18 new projects and deferred four projects without rejecting a single one. These include six projects within five tiger reserve areas (PA update, August, 2015). One can recall how years ago, dolomite mining was totally banned in Buxa Tiger Reserve, although mining history dates back 50 years before the tiger reserve was notified.

The forest cover in India has a target to reach 33 per cent of land area but forests within the Protected Areas have special significance in terms of biodiversity and wildlife conservation. Years back, a study by Zoological Survey of India on tiger reserves of India revealed how tiger reserves have contributed towards efforts of conservation of biological diversity in the country by protecting keystone species and forests. One has to remember that till date 70 per cent of biodiversity has been recorded from the forested area in the world.







# Acknowledgement:

- I express my deep sense of gratitude to Dr. Sukhendu Roy, Assistant Professor, Head of the Department of Zoology, Gushkara Mahavidyalaya under whose direction this study was conducted.
- I am grateful to Principal, Dr. Swapan Kumar Pan, Gushkara Mahavidyalaya, Gushkara, Purba Burdwan, West Bengal.
- I owe a lot to my parents/Guardians, who encouraged and helped me at every stage of my personal and academic life.
- Above all, I owe it all to Almighty for granting me the wisdom, health and strength to undertake this project work and enabling me to its completion.

# Project report on animal cell culture



# Semester-V Honours (Practical) Examination, 2022

# **Roll no:-** 200311000020

# **Registration no:-** 202001004798 of 2020-21

Project submitted in partial fulfillment of the requirements for semester-V Examination of the degree of bachelor (science) Dr. Sukhendu Roy Assistant Professor Department of Zoology Gushkara Mahavidyalaya



Gushkara Mahavidyalaya NAAC Accredited "A" Grade Degree College P.O:Gushkara, Dist:Purba Burdwan, Pin-713128, West Bengal. Email: guskaramahavidyalaya@gmail.com Phone: 03452-255105 Fax: 03452-257635

DATE: 09.02.2023

This is to certify that Md Riyajuddin bearing University Roll No 200311000020 with Registration number 202001004798 of 2020-21 students of B.Sc. Semester V Zoology Honours have worked out the Project work entitled "Animal Cell Culture" under my supervision and the entire work has been carried out by him/her in the Gushkara Mahavidyalaya, Department of Zoology, Guskara. The project work represents explanation of his/her own words. Due to lack of Infrastructure & proper instruments the whole work was not possible in practical based laboratory works. Most of the data were composed from someone's finding.

Sukhendu Roy.

Dr. Sukhendu Roy Assistant Professor Department of Zoology Gushkara Mahavidyalaya

# **ntroduction to Animal Cell Culture**:

Animal cell culture basically involves the in vitro (in the laboratory) maintenance and propagation of animal cells in a suitable nutrient media. Thus, culturing is a process of growing cells artificially. Cell culture has become an indispensible technology in various branches of life sciences. Animal tissue culture technology is now becoming a significant model for many scientists in various fields of biology and medicine. Despite the various developments in animal cell and tissue culture since the late 1800s, until the early 1950s progress in animal tissue culture was stalled due to the non-availability of a suitable cell line. In the early 1950s, for the first time, successful growth of cells derived from the cervical cancer of Mrs Henrietta Lacks was demonstrated. This breakthrough using Mrs Henrietta Lacks's cells in culture successfully transformed medical and biological research, allowing numerous cellular, molecular and therapeutic discoveries, including the breakthrough of the first effective polio vaccine. This culture is now called HeLa, on which there were more than 60 000 publications by 2017, and which has been involved in numerous Nobel prize-winning innovations.

Animal cell culture is a significant tool for biological research. The importance of cell culture technology in biological science was realized a long time ago. Earlier dedifferentiation based experiments of cells due to selective overgrowth of fibroblasts resulted in the enhancement of culture techniques. Animal cell culture involves isolation of cells from a tissue before establishing a culture in a suitable artificial environment. Initial isolation of the cells from the tissues can be achieved by disaggregation using enzymatic or mechanical methods. The source of the isolated cells is usually an *in vivo* environment, but sometimes cells are also derived from an existing cell line or cell strain. Animal cell culture offers suitable model systems for investigating the following factors:

- Drug screening and development.
- Mutagenesis and carcinogenesis.
- Normal physiology and biochemistry of cells.
- Potential effects of drugs and toxic compounds on the cells.

In addition, it also permits reliable and reproducible results, and is thus considered as a significant model system in cellular and molecular biology. Mammalian cell culture requires an optimal environment for growth. Environmental conditions are divided into nutritional

requirements and physicochemical requirements. Nutritional requirements include a substrate or medium that provides support and essential nutrients such as amino acids, carbohydrates, vitamins, minerals, growth factors, hormones and gases (O₂, CO₂). All these factors control physical and chemical factors such as pH, osmotic pressure and temperature. In animal tissue culture the majority of cells are anchorage-dependent and therefore require a solid or semisolid support in the form of a substrate (adherent or monolayer culture), whereas others can be cultured in the culture medium, called a suspension culture. Cell culture technologies have emerged as a tool to assess the efficacy and toxicity of new drugs, vaccines and biopharmaceuticals, and also play a major role in assisted reproductive technology. Animal cell culture is one of the more important and diverse techniques in current research streams. Animal, plant and microbial cells are always cultured in predetermined culture medium under controlled laboratory conditions. Animal cells are more complex than micro-organisms. Due to their genetic complexity it is difficult to determine the optimum nutrient requirements of animal cells cultured under in vitro conditions. Animal cells require additional nutrients compared to micro-organisms, and they usually grow only when attached to specially coated surfaces. Despite these challenges, different types of animal cells, including both undifferentiated and differentiated ones, can be cultured successfully (1,2).

# H

**istorical Background:**Tissue culture involves the *in vitro* maintenance and propagation of cells in optimal conditions. Culturing animal cells, tissue or organs in a controlled artificial environment is called animal tissue culture. The

importance of animal tissue culture was initially realized during the development of the polio vaccine using primary monkey kidney cells (the polio vaccine was the first commercial product generated using mammalian cell cultures). These primary monkey kidney cells were associated with many disadvantages such as:

- Chances of contamination with adventitious agents (risk of contamination by various monkey viruses is high).
- Most of the cells are anchorage-dependent and can be cultured efficiently only when they are attached to a solid or semi-solid substrate (obligatorily adherent cell growth).
- The cells are not well characterized for virus production.
- A scarcity of donor animals as they are on the verge of extinction.

The foundation of animal tissue culture can be considered to have occurred in 1880, when Arnold showed that leukocytes can divide outside the body. Then, in the beginning of the 19th century, Jolly investigated the behavior of animal cells in serum lymph. The development of animal tissue culture commenced after the breakthrough frog tissue culture technique, which was discovered by Harrison in 1907. Due to this effort Harrison is considered as the father of tissue culture. In his experiment he introduced tissue from frog embryos into frog lymph clots and showed that not only did the tissue survive, but nerve fibers grew out from the cells. During the mid-20th century, human diploid fibroblast cells were established by Hayflick and Moorhead (3). They named this cell line MRC-5 (a cell line of fibroblasts derived from lung tissue). Later, Wiktor et al (1964) explored the utilization of this cell line in the production of rabies virus for vaccine production. After a couple of years they suggested a large-scale production protocol along with a method for the assessment of purified rabies vaccine immunogenicity. During the same time, BHK-21 (C13) cells (baby hamster kidney cells) were established. These cells are susceptible to human adenovirus D, reovirus 3 and vesicular stomatitis virus. The commercial production of inactivated foot and mouth disease (a viral disease that causes sores in the mouth and a rash on the hands and feet of children) vaccine began using a suspension process. Back in 1914, Losee and Ebeling cultured the first cancer cells and after a few decades the first continuous rodent cell line was established by Earle (1943) (7). In 1951, Gay established that human tumor cells can give rise to continuous cell lines. The cell line considered as the first human continuous cell line was derived from a cancer patient, Henrietta Lacks, as mentioned above, and HeLa cells are still used very widely. Continuous cell lines derived from human cancers are the most extensively used resource in the modern laboratory. The HeLa discovery was followed by FDA approval for the production of interferon from HeLa cell lines. In addition to the progress in the field of cell culture, different media have been explored, which are typically based on specific cell nutritional requirements, such as serum-free media, starting with Ham's fully defined medium in 1965. In the 1970s, serum-free media were optimized by the addition of hormones and growth factors. Currently, thousands of cell lines are available and for the establishment and maintenance of these cell lines many media are available.

**rgan culture:** The culture of native tissue (i.e. un-disaggregated tissue) that retains most of the in vivo histological features is regarded as organ culture.

**Cell culture**: This refers to the culture of dispersed (or disaggregated) cells obtained from the original tissue, or from a cell line.

**Equipment:** Laminar-flow, sterilizer, incubator, refrigerator and freezer (-20°C), balance, C02 cylinder, centrifuge, inverted microscope, water purifier, hemocytometer, liquid nitrogen freezer, slow- cooling device (for freezing cells), pipette washer, deep washing sink. Besides the basic and minimal requirements listed above, there are many more facilities that may be beneficial or useful for tissue cultures. These include air-conditioned rooms, containment room for biohazard work, phase-contrast microscope, fluorescence microscope, confocal microscope, osmometer, and high capacity centrifuge and time lapse video equipment.

**Culture Vessels:** In the tissue culture technology, the cells attach to the surface of a vessel which serves as the substrate, and grow. Hence there is a lot of importance attached to the nature of the materials used and the quality of the culture vessels. The term anchorage dependent cells is used when the cells require an attachment for their growth. On the other hand, some cells undergo transformation, and become anchorage independent.

**Materials used for culture vessels:** Glass: Although glass was the original substrate used for culturing, its use is almost discontinued now. This is mainly because of the availability of more suitable and alternate substrates.

**Disposable plastics:** Synthetic plastic materials with good consistency and optical properties are now in use to provide uniform and reproducible cultures. The most commonly used plastics are polystyrene, polyvinyl chloride (PVC), polycarbonate, metinex and thermonex (TPX).

Types of culture vessels: The following are the common types of culture vessels.

- i. Multiwall plates
- ii. Petridishes
- iii. Flasks
- iv. Stirrer bottles.

**imitations of Tissue Culture:** There are several limitations of tissue culture; some of them are given below.

1. Need of expertise and technical skill for the development, and regular use of tissue culture.

2. Cost factor is a major limitation. Establishment of infrastructure, equipment and other facilities are expensive.

3. It is estimated that the cost of production of cells is about 10 times higher than direct use of animal tissues.

4. Control of the environmental factors (pH, temperature, dissolved gases, disposal of biohazards) is not easy.

5. The native in vivo cells exist in a three- dimensional geometry while in in vitro tissue culture, the propagation of cells occurs on a two dimensional substrate. Due to this, the cell to cell interactive characters are lost.

**Risks in a Tissue Culture Laboratory and Safety:** There are several risks associated with tissue culture technology. Most of the accidents that occur in culture laboratories are due to negligence and casual approach while dealing with biological and radiological samples, besides improper maintenance of the laboratory.

Primary culture broadly involves the culturing techniques carried following the isolation of the cells, but before the first subculture (3, 4). Primary cultures are usually prepared from large tissue masses. Thus, these cultures may contain a variety of differentiated cells e.g. fibroblasts, lymphocytes, macrophages, epithelial cells.

With the experiences of the personnel working in tissue culture laboratories, the following criteria/ characteristics are considered for efficient development of primary cultures:

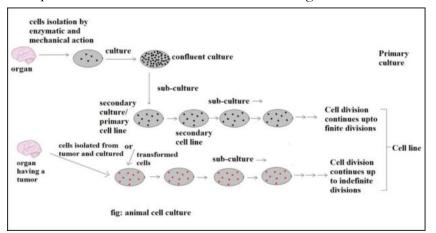
a. Embryonic tissues rather than adult tissues are preferred for primary cultures. This is due to the fact that the embryonic cells can be disaggregated easily and yield more viable cells, besides rapidly proliferating in vitro.

b. The quantity of cells used in the primary culture should be higher since their survival rate is substantially lower (when compared to subcultures).

c. The tissues should be processed with minimum damage to cells for use in primary culture. Further, the dead cells should be removed.

d. Selection of an appropriate medium (preferably a nutrient rich one) is advisable. For the addition of serum, fetal bovine source is preferred rather than calf or horse serum.

e. It is necessary to remove the enzymes used for disaggregation of cells by centrifugation.


ulture Media for Cells and Tissues: Culture medium is the most important factor for culturing cells and tissues. It provides optimum conditions of factors like pH, osmotic pressure etc. It also provides all nutritional requirements needed by growing cells in the culture.

# The media used in animal cell and tissue culture are of two types:

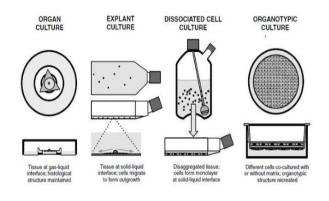
(i) <u>Natural media</u>: The natural media include fluids of biological origin, such as plasma clots and serum. Plasma clot is prepared by treating the blood of an animal with an anticoagulant such as heparin. Serum is the clear fluid part of the blood, formed after blood coagulation when

fibrin separates from the plasma. It is considered as an ideal growth medium for animal cells as if is formed of hundreds of proteins and hormones.

(ii) Artificial media: The artificial culture media primarily consist of balanced salt solution



(BSS) which provide essential inorganic ions, correct osmolarity, required pH (7.0-7.3), energy (= glucose) and a pH indicator (such as phenol red). However, BSS lacks essential amino acids and vitamins. Earle's balanced salt solution and Hanks' balanced salt solution come under this category. These media cannot support growth of cells and tissues but can keep them alive for a period of 12 hours.


For longer survival of the culture, serum may be used or the balanced salt solution may be supplemented with amino acids, oxygen, vitamins and serum protein (7, 8).

**ulture Procedures:** The procedure for tissue culture and cell culture involve preparation and sterilization of glassware, equipment, reagents and media. As the tissue culture is being carried out in highly aseptic condition, all the usable, media and solutions are required to be sterilized thoroughly. Some of the methods of sterilization include swabbing, capping, flaming, dry at, wet heat, radiation, filter sterilization etc.

The work bench, reagent bottles and growth media are swabbed (= cleaned) with 70% ethanol before and after operation. Culture and reagent bottles are capped with deep screw caps. The reagents bottles are capped immediately alter using the reagent. The necks of all bottles and the screw caps are flamed before and after opening and closing. This is a common practice to prevent infection and maintaining aseptic condition.

Glassware, stainless steel instruments, plastic containers, distilled water, phosphate buffered saline and growth medium are sterilized in autoclave at 121 °C and under pressure 15 lb/square inch for 20 minutes. This process of sterilization by means of an autoclave is called as wet heat. It is followed by dry heat. During dry heating, glass ware and dissecting instruments are placed within a hot air oven at 160°C for one hour. The culture room or laminar How cabinet is fitted with a UV lamp.

The lamp is switched on half an hour before the operation of the work for the purpose of sterilization. Some heat labile constituents of the growth medium (such as polypeptides, hormones etc.) are sterilized not by heating method but by another method called filter sterilization. In this method liquid substances are passed through a micro filter (0.2  $\mu$ m) which



removes everything except mycoplasma (50%) and bacterial endotoxins.

**Preparation of Starting Material:** The starting material is an isolated tissue or a body part. The isolated tissue or the body part consists of numerous cells cemented together by proteinous substances. To start the cell culture, the starting tissue is to be dissociated into cells by two methods: (i) mechanical method, (ii) enzymatic method.

In mechanical method the isolated tissue is cut into small pieces in BSS (Balanced Salt Solution) and these are then cultured in suitable vessels. In enzymatic method, the enzyme trypsin is generally used to dissociate cells present in the tissue by digesting the proteinous cementing material.

Following dissociation of starting tissue into cells by the mechanical or enzymatic method, the dissociated cells are placed in flat bottomed culture vessel (either made of glass or high grade plastic) containing culture medium. The culture vessel should have optimum number of cells and it should be incubated at 37°C. The inner surface of the culture vessel should have negatively charged (SO3) group.

The transfer of dissociated cells into the culture medium is called as inoculation. A culture established directly from differentiated tissue (isolated tissue or body part) is known as primary culture. After sometime the bottom of the culture vessel will be covered by a continuous layer of cells, often one cell thick. This layer of cells is known as monolayer.

The cells from the primary culture can be detached from the culture vessel by trypsin or EDTA (Ethylene Diamine Tetraacetic Acid) treatment and transferred to fresh media. The culture so obtained is called cell lines. The process of transferring cultured cells into fresh culture vessels is termed as sub culturing.

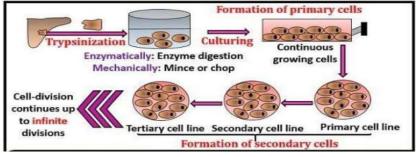
The cells divide at a constant rate over successive transfers. Such cells comprise a cell strain. Cell strains do not have an infinite life. They divide 50-100 times before dying. For long term culture the cell lines are preserved in frozen state in liquid nitrogen in presence of cryo preservative agents and foetal calf serum. Small-scale cultures are generally carried out either in plastic petriplates or plastic T-flasks. Large-scale cultures involving mammalian cells are carried out in bioreactors or fermenters (9).

# ypes of Animal Cell Culture:

# i. Primary Culture:

When cells are surgically removed from an organism and placed into a suitable culture environment, they will attach, divide and grow. This is called a Primary Culture.

## ii. Sub-Culturing:


When the cells in the primary culture vessel have grown and filled up all of the available culture substrate, they must be Sub-cultured to give them room for continued growth. This is usually done by removing them as gently as

Remove tissue	
Mince or chop	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Digest with proteolytic enzymes	5-1-5-
Place in culture	

possible from the substrate with enzymes. Some cell lines can be harvested by gently scraping the cells off the bottom of the culture vessel. Once released, the cell sus-pension can then be subdivided and placed into new culture vessels.

## ii. Functional Characteristics:

The characteristics of cultured cells result from both their origin (liver, heart, etc.) and how well they adapt to the culture conditions. Frequently, these characteristics are either lost or changed as a result of being placed in an artificial environment. Some cell lines will eventually stop dividing and show signs of aging. These lines are called Finite. Other lines which become immortal can continue to divide indefinitely and are called Continuous cell lines. When a "normal" finite cell line becomes immortal, it undergoes a fundamental irreversible change or "transformation". This can occur spontaneously or be brought about intentionally using drugs, radiation or viruses.



**echniques for Primary Culture:** Among the various techniques devised for the primary culture of isolated tissues, three techniques are most commonly used:

1. Mechanical disaggregation.

- 2. Enzymatic disaggregation.
- 3. Primary explant technique.

**Technique # 1. Mechanical Disaggregation:** For the disaggregation of soft tissues (e.g. spleen, brain, embryonic liver, soft tumors), mechanical technique is usually employed. This technique basically involves careful chopping or slicing of tissue into pieces and collection of spill out cells.

The cells can be collected by two ways:

i. Pressing the tissue pieces through a series of sieves with a gradual reduction in the mesh size.

ii. Forcing the tissue fragments through a syringe and needle.

Although mechanical disaggregation involves the risk of cell damage, the procedure is less expensive, quick and simple. This technique is particularly useful when the availability of the tissue is in plenty, and the efficiency of the yield is not very crucial.

**Technique # 2. Enzymatic Disaggregation:** Enzymatic disaggregation is mostly used when high recovery of cells is required from a tissue. Disaggregation of embryonic tissues is more efficient with higher yield of cells by use of enzymes. This is due to the presence of less fibrous connective tissue and extracellular matrix. Enzymatic disaggregation can be carried out by using trypsin, collagenase or some other enzymes.

Disaggregation by trypsin: The term trypsinization is commonly used for disaggregation of tissues by the enzyme, trypsin.

Many workers prefer to use crude trypsin rather than pure trypsin for the following reasons:

i. The crude trypsin is more effective due to the presence of other proteases

ii. Cells can tolerate crude trypsin better.

iii. The residual activity of crude trypsin can be easily neutralized by the serum of the culture media (when serum-free media are used, a trypsin inhibitor can be used for neutralization).

Disaggregation of cells can also be carried out by using pure trypsin which is less toxic and more specific in its action. The desired tissue is chopped to 2-3 mm pieces and then subjected to disaggregation by trypsin. There are two techniques of trypsinization-warm trypsinization and cold trypsinization.

Warm trypsinization: This method is widely used for disaggregation of cells. The chopped tissue is washed with dissection basal salt solution (DBSS), and then transferred to a flask containing warm trypsin ( $37^{\circ}$  C). The contents are stirred, and at an interval of every thirty minutes, the supernatant containing the dissociated cells can be collected. After removal of trypsin, the cells are dispersed in a suitable medium and preserved (by keeping the vial on ice).

The process of addition of fresh trypsin (to the tissue pieces), incubation and collection of dissociated cells (at 30 minutes intervals) is carried out for about 4 hours. The disaggregated cells are pooled, counted, appropriately diluted and then incubated.

Cold trypsinization: This technique is more appropriately referred to as trypsinization with cold pre-exposure. The risk of damage to the cells by prolonged exposure to trypsin at 37°C (in warm trypsinization) can be minimized in this technique (8).

After chopping and washing, the tissue pieces are kept in a vial (on ice) and soaked with cold trypsin for about 6-24 hours. The trypsin is removed and discarded. However, the tissue pieces contain residual trypsin. These tissue pieces in a medium are incubated at 37°C for 20-30 minutes. The cells get dispersed by repeated pi-pettings. The dissociated cells can be counted, appropriately diluted and then used.

The cold trypsinization method usually results in a higher yield of viable cells with an improved survival of cells after 24 hours of incubation. This method does not involve stirring or centrifugation, and can be conveniently adopted in a laboratory. The major limitation of cold trypsinization is that it is not suitable for disaggregation of cells from large quantities of tissues.

**Limitations of trypsin disaggregation:** Disaggregation by trypsin may damage some cells (e.g. epithelial cells) or it may be almost ineffective for certain tissues (e.g. fibrous connective tissue). Hence other enzymes are also in use for dissociation of cells.

**Disaggregation by collagenase:** Collagen is the most abundant structural protein in higher animals. It is mainly present in the extracellular matrix of connective tissue and muscle. The enzyme collagenase (usually a crude one contaminated with non-specific proteases) can be effectively used for the disaggregation of several tissues (normal or malignant) that may be sensitive to trypsin.

Highly purified grades of collagenase have been tried, but they are less effective when compared to crude collagenase. Collagenase in combination with hyaluronidase is found to be very effective for dissociating rat or rabbit liver. This can be done by per-fusing the whole organ in situ. Some workers use collagenase in conjunction with trypsin, a formulation developed in chick serum, for disaggregation of certain tissues (5, 6, 8).

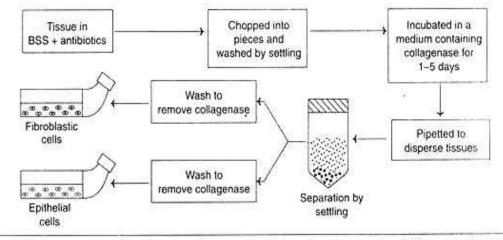



Fig. 36.3 : Important stages in collagenase disaggregation of tissue for primary culture (BSS-Basal salt solution).

**Technique # 3. Primary Explant Technique:** The primary explant technique was, in fact the original method, developed by Harrison in 1907. This technique has undergone several modifications, and is still in use. The tissue in basal salt solution is finely chopped, and washed by settlings. The basal salt solution is then removed. The tissue pieces are spread evenly over the growth surface. After addition of appropriate medium, incubation is carried out for 3-5

days. Then the medium is changed at weekly intervals until a substantial outgrowth of cells is observed. Now, the explants are removed and transferred to a fresh culture vessel.

**Separation of Viable and Non-Viable Cells:** It is a common practice to remove the nonviable cells while the primary culture is prepared from the disaggregated cells. This is usually done when the first change of the medium is carried out. The very few left over non-viable cells get diluted and gradually disappear as the proliferation of viable cells commences.

# dvantages of Animal Cell Culture:

A. Toxicity Testing: Cultured cells are widely used alone or in conjunction with animal tests to study the effects of new drugs, cosmetics and chemicals on survival and growth in a wide variety of cell types. Especially important are liver and kidney derived cell cultures.

**C. Cancer Research**: Since both normal cells and cancer cells can be grown in culture, the basic differences between them can be closely studied. In addition, it is possible, by the use of chemicals, viruses and radiation, to convert normal cultured cells to cancer causing cells.

**D.** Virology: One of the earliest and major uses of cell culture is the replication of viruses in cell cultures (in place of animals) for use in vaccine production. Cell cultures are also widely used in the clinical detection and isolation of viruses, as well as basic research into how they grow and infect organisms.

**E. Cell-Based Manufacturing:** While cultured cells can be used to produce many important products, three areas are generating the most interest.

The first is the large-scale production of viruses for use in vaccine production. These include vaccines for polio, rabies, chicken pox, hepatitis B and measles.

The second is the large-scale production of cells that have been genetically engineered to produce proteins that have medicinal or commercial value. These include monoclonal antibodies, insulin, hormones, etc. The third is the use of cells as replacement tissues and organs. Artificial skin for use in treating burns and ulcers is the first commercially available product (9,10).

**F. Genetic Counselling:** Amniocentesis, a diagnostic technique that enables doctors to remove and culture fetal cells from pregnant women, has given doctors an important tool for the early diagnosis of fetal disorders. These cells can then be examined for abnormalities in their chromosomes and genes using karyotyping, chromosome painting and other molecular techniques.

**G. Genetic Engineering:** The ability to transfect or reprogram cultured cells with new genetic material (DNA and genes) has provided a major tool to molecular biologists wishing to study the cellular effects of the expression of these genes (new proteins).

**H. Drug Screening and Development:** Cell-based assays have become increasingly important for the pharmaceutical industry, not just for cytotoxicity testing but also for high throughput screening of compounds that may have potential use as drugs. Originally, these cell culture tests were done in 96 well plates, but increasing use is now being made of 384 and 1536 well plates.

**I. Gene Therapy**: In modern molecular biology, Gene Therapy is an experimental technique that involves insertion of cloned/altered genes into cells using r-DNA technology to replace defective genes causing genetic abnormalities or to prevent potential disorders.

# References

- 1. Aucoin M.G., Jacob D., Chahal P.S., Meghrous J., Bernier A., Kamen A.A. Virus-like particle and viral vector production using the baculovirus expression vector system/insect cell system. Methods Mol. Biol. 2007; 388:281–296.
- Clarke B.E., Newton S.E., Carroll A.R., Francis M.J., Appleyard G., Syred A.D. Improved immunogenicity of a peptide epitope after fusion to hepatitis B core protein. Nature. 1987;330: 381–384.
- 3. Cruz P.E., Maranga L., Carrondo M.J.T. Integrated process optimisation: lessons from retrovirus and virus like production. J. Biotechnol. 2002;99: 199–214.
- 4. Domansky K., Inman W., Serdy J., Dash A., Lim M.H., Griffith L.G. Perfused multiwell plate for 3D liver tissue engineering. Lab. a chip. 2010;10(1):51–58.
- Eagle H. Amino acid metabolism in mammalian cell cultures. Science. 1959;130: 432– 437.

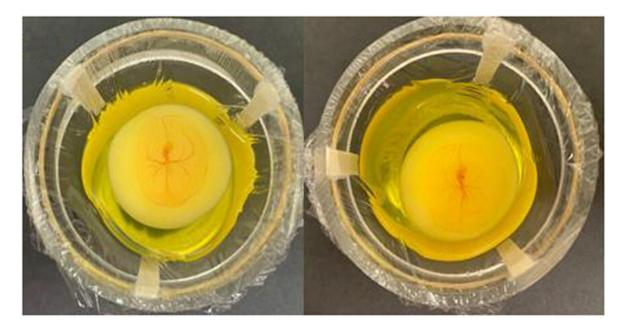
- 6. Bhat S.M. Animal Cell Culture Concept and Application. Alpha Science International Limited; Oxford: 2011.
- 7. Caplen H., Peters B.J., Bishop D.H.L. Mutagen-directed attenuation of Rift Valley fever virus as a method for vaccine development. J. Gen. Virol. 1985;66: 2271–2277.
- 8. Chakraborty S., Reid S. Serial passage of a Helicoverpa armigera nucleopolyhedrovirus in Helicoverpa zea cell cultures. J. Invertebr. Pathol. 1999;73: 303–308.
- Chen T.H., Liu W.C., Chen I.C., Liu C.C., Huang M.H., Jan J.T. Recombinant hemagglutinin produced from Chinese Hamster Ovary (CHO) stable cell clones and a PELC/CpG combination adjuvant for H7N9 subunit vaccine development. Vaccine. 2019;37(47): 6933–6941.
- 10. Cho M.H., Niles A., Huang R., Inglese J., Austin C.P., Riss T. A bioluminescent cytotoxicity assay for assessment of membrane integrity using a proteolytic biomarker. Toxicol. Vitro. 2008;22: 1099–1106.

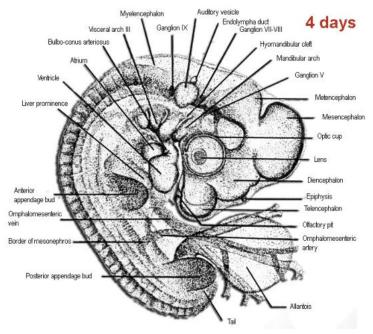
# **CKNOWLEDGEMENT**

I express my deep sense of gratitude to Dr. Sukhendu Roy,Assistant Professor, Head of the Department of Zoology, GushkaraMahavidyalaya under whose direction this study was conducted.

I am ever grateful to Dr. Saurabh Sarkar, Assistant Professor, Department of Zoology, GushkaraMahavidyalaya, for his continuous encouragement<u>.</u>

I am thankful to Aparnita Nandi Roy, Lecturer, Department of Zoology, GushkaraMahavidyalaya, for her valuable suggestions.


I am also thankful to Dr. NabyenduRakshit& Miss Poulomi Roy, SACT-I, Department of Zoology, GushkaraMahavidyalaya, for their continuous support.


I am grateful to Principal, Dr. Swapan Kumar Pan, GushkaraMahavidyalaya, Gushkara, PurbaBurdwan, West Bengal.

My appreciation goes to Mr. Kalyan Kr. Mukherjee and Mr. Uday Chand Mete, Laboratory Attendant for technical works, whose active involvement smoothened the entire tedious venture. I owe a lot to my parents, who encouraged and helped me at every stage of my personal and academic life.

Above all, I owe it all to Almighty God for granting me the wisdom, health and strength to undertake this project work and enabling me to its completion.

# Project work entitled "Whole Mounting & Identification of specific stages of Chick Embryos"





SUBMITTED BY

Name: Seheli Pervin University Roll No: 200311000032 Registration number 202001004811 of 2020-21 Dr. Sukhendu Roy Assistant Professor Department of Zoology Gushkara Mahavidyalaya

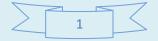


Gushkara Mahavidyalaya NAAC Accredited "A" Grade Degree College P.O:Gushkara, Dist:Purba Burdwan, Pin-713128, West Bengal. Email: guskaramahavidyalaya@gmail.com Phone: 03452-255105 Fax: 03452-257635

DATE: 21.06.2023

This is to certify that Seheli Pervin bearing University Roll No 200311000032 with Registration number 202001004811 of 2020-21 students of B.Sc. Semester VI Zoology Honours have worked out the Project work entitled "Whole Mounting & Identification of specific stages of Chick Embryos" under my supervision and the entire work has been carried out by him/her in the Gushkara Mahavidyalaya, Department of Zoology, Guskara. The project work represents explanation of his/her own words. Due to lack of Infrastructure & proper instruments the whole work was not possible in practical based laboratory works.

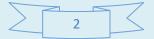
Sukhendu Roy


Dr. Sukhendu Roy Assistant Professor Department of Zoology Gushkara Mahavidyalaya

# Introduction:

The chicken (taxon -Gallus gallus) embryo develops and hatches in 20 to 21 days and has been extensively used in embryology studies. Historically, the chicken embryo was one of the first embryos studied, readily available and easy to incubate, embryo development can be directly observed by cutting a small window in the egg shell. A key to this model organism study was the establishment of a staging atlas by Hamburger & Hamilton in 1951[1], which allowed specific developmental landmarks to be seen and correlated with experimental manipulations of development. This much cited paper included images of all key stages and was more recently republished in the journal Developmental Dynamics (1993), for a new generation of avian researchers. Probably just as important has been the recent chicken genome sequencing, providing a resource to extend our knowledge of this excellent developmental model.

Fertilized eggs can be easily maintained in humidified incubators and during early stages of development the embryo floats on to the egg yolk that it is using for nutrition. As the embryo grows it sinks into, or below the, yolk. The regular appearance of somites allowed early experimenters to accurately stage the embryo. The embryo was accessible and easy to manipulate (limb grafts/removal etc) that were informative about developmental processes. Chicken cells and tissues (neural ganglia/fragments) are also easy to grow in tissue culture. The discovery that quail cells have a different nuclear appearance meant that transplanted cells (chick/quail chimeras) could be tracked during development. For example, LeDourian's studies showed how neural crest cells migrate widely throughout the embryo.


The chicken (*Gallus gallus*) embryo is an excellent model for the study of early vertebrate embryogenesis and later organogenesis. The embryo is encased within a hardened eggshell which provides a natural incubator or culture dish. Through a hole in the eggshell, the embryo



can be visualized and easily manipulated with microsurgical tools or gene constructs, then allowed to continue development in ovum to determine the consequence of the experimental manipulation. Fertilized chicken eggs are readily available anywhere in the world and the equipment needed is minimal – a humidified incubator (39°C, no CO2 required), a dissecting microscope, microsurgical tools that can be prepared in the lab or purchased, and either a hand held mouth pipette or a manufactured micromanipulator. Fertilized eggs can be held at ~13-16°C for up to 1 week prior to incubation. They are incubated at 38°C39°C to the desired stage in a humidified incubator with the eggs placed on their side (horizontal). For long term postoperative survival, it is best that the eggs be left in the incubator until experimental manipulation. However, eggs can be removed from the incubator and held at room temperature to slow development.

# **Taxonomic Hierarchy**





# Order Galliformes

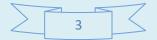
Family Phasianidae
Subfamily Phasianinae
Genus Gallus Brisson, 1760
Species Gallus gallus (Linnaeus, 1758)

# Aims

- To investigate the effects of temperature on heart rate
- To observe embryonic structures, particularly the somites

# Learning outcomes

By the end of the practical, students will hopefully:


1. Appreciate the utility of embryos for the study of anatomy and physiology

2. Recognise the advantage of having an accessible embryo in an egg for studies of development

- 3. Appreciate the dynamic nature of development
- 4. Understand how heart rate is regulated and how external factors can affect it

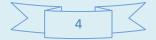
# SAFE WORKING PROCEDURES AND ANIMAL ETHICS

# **Risks Associated with Practical**



Eggs have the potential to be contaminated with *Salmonella*. Wear gloves throughout and students should wash their hands before leaving the lab. Dissection implements are sharp, so students should take care not to cut themselves or other students. Students should wear a labcoat, gloves and enclosed shoes to protect themselves from egg splatter.

# **Animal Ethics Compliance**


The procedures used in this practicum are in compliance with the Animal Care and Ethics Committee and the National Health and Medical Research Council 'India code of practice (9th edition, 2017).

# MATERIAL REQUIRED

- 1. Fertilized hen's egg,
- 2. Incubator (38°C, preferably with automatic egg turning facility),
- 3. Coarse forceps,
- 4. Watchmaker's forceps,
- 5. Fine scissors,
- 6. Petri dishes

# **EXPERIMENTAL PROCEDURES**

- 1. Take fertilized hen's egg.
- 2. 1. Eggs were incubated for 1 up to 8 days at 38.5°C to generate embryos of several developmental stages (16 hrs/18 hrs/24hrs/33hrs/48 hrs/72 hrs/ 96 hrs etc.)



# A. Opening of the egg

1. Each student pair should have one egg and an egg holder, a pair of blunt forceps and a pair of scissors,

2. Petri dishes, PBS, disposable pipet, syringe and 23G needle, Indian ink solution, dissection microscope.

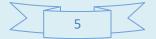
3. Put the egg into the holder with the blunt end up (pointed end down).

4. Use the pointy end of the scissors to tap a hole in the top of the egg into the air chamber, be very careful not to push the scissors too far into the egg.

5. Use the forceps to pick bits of shell out. Do not remove egg shell beyond the air chamber.You will see the air chamber and the vitelline membrane.

6. Carefully remove the vitelline membrane at the top.

7. If you do not see the embryo (a ring of blood vessels should be visible) then gently swirl the egg so that it floats up to the top of the yolk. If this doesn't work you will need to take another egg if available.


8. Use the forceps to break off pieces of shell down to the yolk so that the embryo (visible as a ring of blood vessels) is exposed and the rim of the shell is just above the surface of the egg white or albumen.

9. You may be able to see the heart beating without magnification. If not, then put the egg under the dissection microscope.

# **B.** Early stage somitogenesis embryos

1. Draw Indian ink solution (if available) up into a 1 ml syringe fitted with a 23G syringe needle.

2. Open an egg as described above. Once the shell has been removed down to the level of the yolk and the vitelline membrane has been removed, slide the syringe needle under the embryo.



It is easiest to insert the syringe needle vertically at the edge of the egg initially and then rotate the needle until it is almost horizontal using the edge of the egg shell as a support. The tip of the needle should end up just below the embryo in the centre of the egg.

3. Slowly inject the Indian ink solution to reveal the embryo and view under a dissecting microscope.

4. Identify the HH stage and the diverse embryonic structures.

- 5. Draw your embryo and annotate the embryonic structures that you have identified.
- 6. Hand your drawing in at the end of the practical.

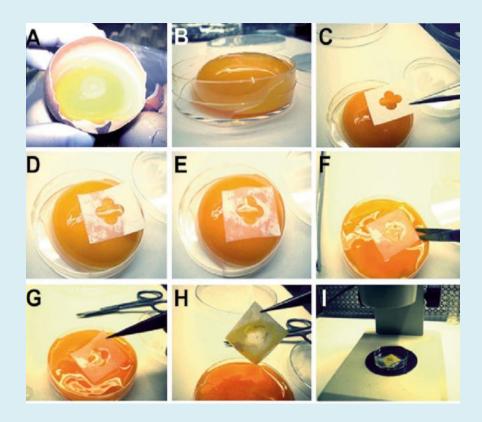
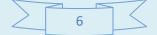




Fig-1. Early Chick (EC) procedure for preparing whole mounts from chick embryos to be used in ISH. (a) After opening the egg shell, pour off the albumin. (b) Place the yolk in a dry Petri dish with the blastoderm faceup. (c–e) Place upon the blastoderm a piece of filter paper pre-prepared with a central hole (note the particular tetra-lobulated



cloverleaf shape of the hole), centering the hole on the embryo, and slightly press it down with forceps to make it adhere to the blastoderm (it becomes transparent). (f) The

vitelline membrane is trimmed around the filter paper. (g) Detach the filter plus blastoderm from the yolk in an angle, holding it with forceps. (h) Remove excess yolk adhering to the underside of the filter paper and blastoderm, and transfer it to a Petri dish with clean PBS. (i) Remove traces of yolk under a dissecting microscope and

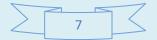
#### transfer to another Petri dish with cold fixative solution

# C. Late stage organogenesis embryos

1. Carefully tear a hole in the vitelline membrane.

2. Very carefully tilt egg contents in a large Petri dish, holding the egg very close to the dish.

3. Find and dissect the embryo, transfer it to a clean Petri dish and cover it with PBS.


4. Study embryo under a dissection microscope, determine the developmental HH stage (see last page of the manual or link below), and identify the embryonic structures.

5. Draw your embryo, indicate the developmental stage (HH), and annotate the embryonic structures that you have identified.

6. Hand your drawing in at the end of the practical.



Fig-1.1 Mounting of the embryo to a slide



# **D.** Observation of developmental stages

Move around the class to study the embryonic chicken stages of your colleagues. Identify the following structures:

- Amniotic sac
- Hensen's node
- Neural groove and folds
- Head ectoderm
- Somites
- Brain vesicles
- Cardiogenic mesoderm
- Heart and vasculature
- Optic vesicles
- Branchial arches
- Nasal pits and nasal processes
- Otic vesicle
- Limb buds



#### Study of Chick Embryo at 4 Hours

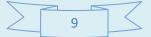
Features of whole mount chick embryo at 4 hours.

- i. At 4 hours of incubation the differentiation of the blastodisc into area pellucida and area opaca can be observed in the chick embryo.
- ii. One quadrant of the area pellucida appears thickened which is the region of the future caudal end of embryo (Fig. 7.1). After 7 to 8 hours, the thickening will become more elongated and then represents the start of primitive streak.

## Study of Chick Embryo at 16 Hours

#### I. Features of whole mount of chick embryo at 16 hours of incubation.

i) In the whole mount of a 16 hour chick embryo (Fig. 1.1.1) you will observe the distinct primitive streak. The embryo at this stage is characterized as being in the primitive streak stage.


ii) In the whole mount, the embryo is seen to have a central furrow, called the primitive groove which appears lined by thickened primitive ridges.

iii) At the cephalic end (head end) of the embryo, closely packed cells form a thickened area, called as Hensen's node.

iv) Part of area pellucida adjacent to the primitive streak shows increased thickness and forms the embryonic area or embryonic shield.

v) The area of pellucida at this stage assumes an elliptical shape.

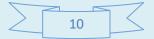
vi) An elongated primitive streak is visible which represents the long axis of the future embryonic body. vii) The end diametrically opposite to the Hensen's node is the caudal end of the embryo.






Fig-1.1.1: chick embryo at 16 hours of incubation

## II. Features of chick embryo in longitudinal section (LS) at 16 hours after incubation


i) The LS through the 16 hour chick embryo represents the embryonic chick stage shortly after primitive streak formation. It also marks the beginning of morphogenetic movement of cells to form the notochord.

ii) The LS shows the ectoderm, Hensen's node, primitive pit, primitive groove, notochord and primitive gut. The mesoderm extends on either side between ectoderm and endoderm.

# Study of Chick Embryo at 18 Hours

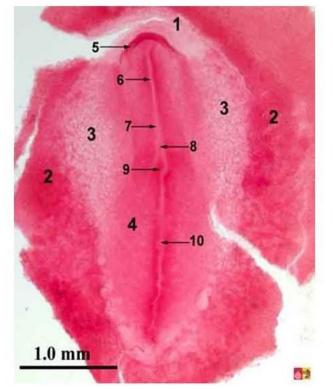
## I. Features of whole mount of chick embryo at 18 hours of incubation.

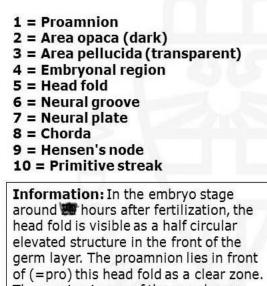
i) In the 18 hour whole embryo you will observe that the notochord has become markedly elongated to form a conspicuous structure (Fig 2).



ii) Notochord is seen to extend from the Hensen's node towards the cephalic region present in the middle.

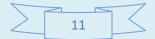
iii) Embryo at this stage of development is said to be in the head process stage.


iv) Neural plate develops around the notochord.


v) The dark peripheral area opaca, the inner translucent area pellucida and the central embryonal area are clearly visible.

vi) In the anterior region a small and more translucent portion of area pellucida, known as proamnion can be observed.

vii) The primitive streak lies in the middle of the area pellucida in the posterior half.


viii) The neural plate and primitive streak can be seen to be separated by Hensen's node.





of (=pro) this head fold as a clear zone. The amnion is one of the membranes that will protect the embryo in a later stage

Fig-2: chick embryo at 18 hours of incubation



#### II. Features of chick embryo in longitudinal section (LS) at 18 hours after incubation

i) The LS of the 18 hours incubated chick embryo shows advanced inner structures of the germ layers.

ii) Ectoderm is seen to have vertical cells while the cells of the mesoderm are represented by heavy angular dots. Endoderm is represented by stippling backed by a single line.

iii) Yolk, ectoderm of neural plate, notochord, mesodem, ectoderm and endoderm of blastoderm can be observed in the section of the slide.

iv) You will also observe the primitive pit, primitive ridge, and primitive gut.

## Study of Chick Embryo at 24 Hours

#### I. Features of whole mount of chick embryo at 24 hours of incubation.

i) In the whole mount of a 24 hour old embryo (Fig 3) the cephalic region is prominently visible because of rapid growth in this region.

ii) The cephalic region extends anteriorly and overhangs the proamnion region. The cephalic region which projects free from the blastoderm can now be properly termed as the head of embryo.

iii) A space between the head and the blastoderm is formed and is visible and is called the subcephalic pocket.

iv) In the mid-line of the embryo the notochord is visible. It is larger at the caudal area near its point of origin than at the cephalic area.

v) The neural plate is much more clearly visible. The neural folds appear as a pair of dark bands.

vi) At its cephalic end, the neural groove is deeper. The neural folds are correspondingly more prominent at the cephalic end than they are caudally.

vii) Four pairs of somites are seen in the mid-line.



viii) Primitive streak is seen to gradually decrease in size.

ix) Foregut is also formed and is visible.

x) The part of the gut, caudal to the foregut is termed the midgut and the opening of the midgut into the foregut is called the anterior intestinal portal.

xi) In addition to the structures, mentioned above the area opaca vitellina, area pellucida, proamnion, Hensen's node, area vasculosa, blood islands and unsegmented mesoderm are also seen (Fig. 3).

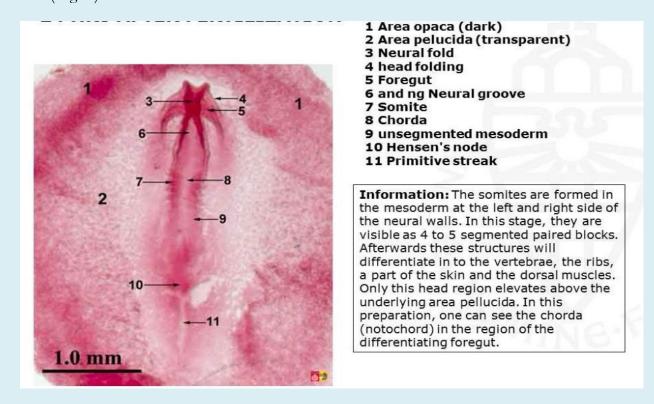



Fig-3: chick embryo at 24 hours of incubation

#### II. Features of chick embryo in transverse section (T.S) at 24 hours after incubation

i) The transverse section passing through head region (Fig. 7.7a) shows the folded neural plate forming a complete tube.

ii) The notochord can be seen beneath the neural fold.



iii) Mesenchyme, foregut, ectoderm of head, mesoderm and endoderm can be seen in this section.

iv) The transverse section passing through mid-body of the chick embryo (Fig. 7.7b) shows formation of somites and changes in the mesoderm.

v) Mesoderm is seen to be differentiated into: i) dorsal mesoderm, ii) intermediate mesoderm and iii) lateral mesoderm.

vi) Other structures seen in the slide are ectododerm, endoderm, lateral margin of anterior intestinal portal, midgut and pericardial coelom.

#### Study of Chick Embryo at 33 Hours

#### I. Features of whole mount of chick embryo at 33 hours of incubation

i) The 33 hour old embryo of chick (Fig. 4) shows some of the fundamental structures which will be involved in the formation of central nervous system and circulatory system.

ii) You will notice remarkable changes in the development of the brain. Observe that the brain is differentiated into prosencephalon (fore-brain), mesencephalon (mid-brain), and rhombencephalon (hind- brain).

iii) The optic vesicles have been established and can be seen in the whole mount as paired lateral outgrowths of the prosencephalon. The optic vesicles will later extend to occupy the full width of the head. Infundibulum is seen to have formed in the floor of the prosencephalon.


iv) Mid-region of the heart is considerably dilated and is bent to the right.

v) Twelve pairs of somites can be observed.

vi) Anterior omphalomesentric veins have developed and can be seen.

vii) The primitive streak becomes shorter because of the lengthening of the neural tube.

viii) Proamnion, neural tube, notochord, sinus rhomboidalis and sinus terminalis are also present and can be seen.



# **33 HRS AFTER FERTILIZATION**

- 1 = Proamnion 2 = Prosencephalon
- 9 = Heart 10 = Lateral mecoder

V.

- <u>10 = Lateral mesoderm</u> <u>11 = Spine</u>
- 3 = Mesencephalon 4 = Rhombencephalon
  - te <u>12 = Sinus rhomboidalis</u> 13 = Primitive streak
- 5 = Somite 6 = Eye vesicle
- 14 = Blood islands
- 7 = Foregut
- 8 = Chorda (translucent)

Information: At about 33 hours after fertilization, the embryo is about 4 mm long and the first flexion of the originally straight embryo starts in the head region and the cranial flexure will be visible a few hours later. At this stage 12 to 13 somites are formed. The eve vesicles are rather large. The forebrain vesicle or prosencephalon will divide, the midbrain vesicle or mesencephalon remains undivided while the hindbrain vesicle or rhombencephalon will form a series of smaller neuromeres. The sinus rhomboidalis (diamond-shaped???) is still present as the only opening of the neural tube and the primitive streak is only rudimentary. The infundibulum (= derived from the diencephalon) appears as a half circular structure at the ventral side of caudal part of the forebrain. The notochord or chorda dorsalis ends just behind this venral vesicle.

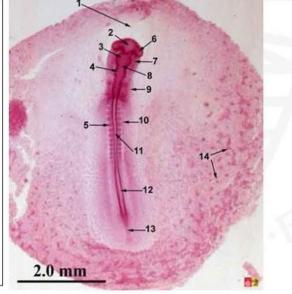



Fig-4: chick embryo at 33 hours of incubation

## II. Features of chick embryo in transverse section (T.S) at 33 hours after incubation

i) The transverse section of the 33 hour old embryo chick shows the following structures ectoderm, prosocoel, opticoel, mesenchyme, somatic mesoderm, splanchnic mesoderm and endoderm.

ii) The section shows mid- structures namely, mesocoel, anterior cardinal vein, dorsal aortic root, somatopleure, extraembryonic coelom, splanchnopleure, foregut, notochord and ventral aortic root.

# Study of Chick Embryo at 48 Hours

## I. Features of whole mount of chick embryo at 48 hours of incubation

i. Head is turning onto the left side with distinct cranial flexure.

ii. Anterior neuropore closed.



- iii. Telencephalon indicated.
- iv. Primary optic vessel and optic stalk well established.
- v. Auditory pit is deep but wide opened.
- vi. Heart is slightly S-shaped.
- vii. Headfold of amnion covers entire region of forebrain.
- viii. Presence of 16-19 pairs of somites (Fig. 5).

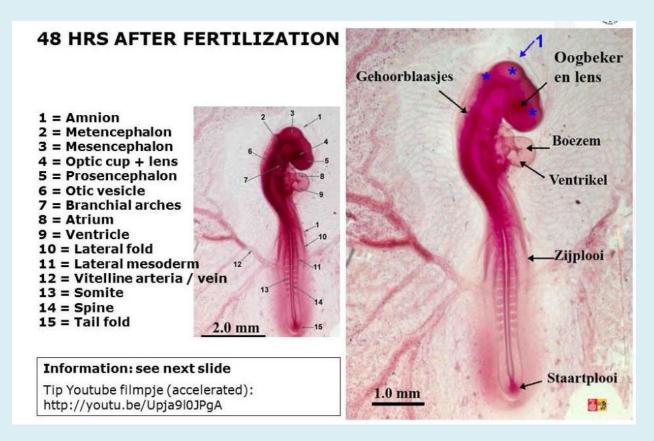
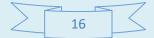




Fig-5: chick embryo at 48 hours of incubation

# Study of Whole Mount of Chick Embryo at 72 Hours of Incubation

## I. Features of whole mount of chick embryo at 72 hours of incubation

i) The 72 hours old chick embryo (Fig. 6) as observed in the whole mount is seen to be affected throughout by torsion and the entire body is seen to have turned through 90". Torsion is



complete in the chick embryo posterior to the level of heart, but the caudal portion of embryo is not turned on its side.

ii) The long axis of the embryo due to the presence of cranial and cervical flexures, shows nearly right angled bends in the mid brain and neck region. The mid body appears concave.

iii) Visceral arches have developed and can be seen.

iv) Mandibular arch is visible and has formed the caudal boundary of oral depression and become more distinct.

v) Nasal pits appear as shallow depressions.

vi) Cephalization can be seen to be in process. Telencephalon has developed and is visible.

vii) In the eye, the lens, sensory and pigmented layers can be seen to have differentiated.

viii) Number of somites have increased to 36 pairs.

ix) Vitelline arteries and vitelline veins also make their appearance and are visible.

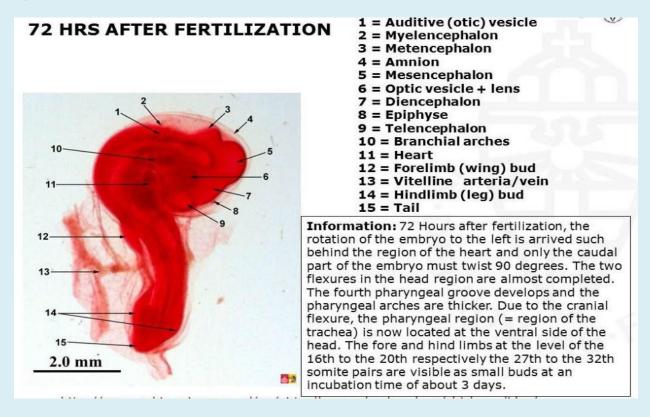
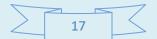




Fig-6: chick embryo at 72 hours of incubation



## Study of Whole Mount of Chick Embryo at 96 Hours of Incubation

#### I. Features of whole mount of chick embryo at 96 hours of incubation

i) At 96 hours of incubation the entire body of the chick embryo has been turned through 90" and the embryo lies with its left side on the yolk (Fig. 7).

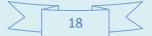
ii) At the end of 96 hours the body folds have undercut the embryo so that the embryo is seen to be attached to the yolk only by a slender stalk.

iii) The yolk stalk soon becomes elongated, allowing the embryo to become first straight in the mid-dorsal region and then in the dorsal region.

iv) The progressive increase in the cranial, cervical, dorsal and caudal flexures results in the bending of the embryo on itself so that its originally straight long axis becomes C shaped and its head and tail lie close together.

v) Paired optic cups show more developed lens.

vi) Endolymphatic ducts arise from the paired auditory vesicle.


vii) Visceral arches appear to have thickened.

viii) Appendage buds appear increased in size and can be seen to have become elongated.

ix) The number of somites are seen to have increased to 41 pairs.

x) Allantois has also made an appearance and is visible.

xi) Omphalomesentric artery and omphalomesentric vein have also developed and can be observed.



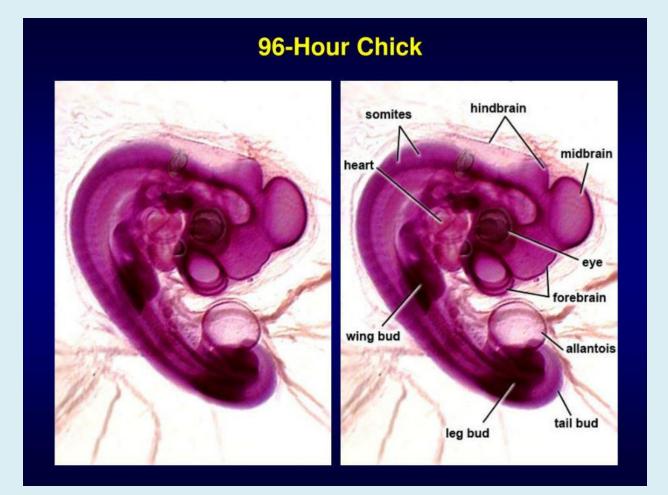
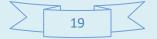




Fig-7: chick embryo at 96 hours of incubation

# **References:**

- Hamburger V & Hamilton HL. (1992). A series of normal stages in the development of the chick embryo. 1951. Dev. Dyn., 195, 231-72. Davey MG, Towers M, Vargesson N & Tickle C. (2018). The chick limb: embryology, genetics and teratology. Int. J. Dev. Biol., 62, 85-95.
- Kremnyov S, Henningfeld K, Viebahn C & Tsikolia N. (2018). Divergent axial morphogenesis and earlyshhexpression in vertebrate prospective floor plate. Evodevo , 9, 4.



- Gong H, Wang H, Wang Y, Bai X, Liu B, He J, Wu J, Qi W & Zhang W. (2018). Skin transcriptome reveals the dynamic changes in the Wnt pathway during integument morphogenesis of chick embryos. PLoS ONE, 13, e0190933.
- Cela P, Hampl M, Fu KK, Kunova Bosakova M, Krejci P, Richman JM & Buchtova M. (2016). MORN5 Expression during Craniofacial Development and Its Interaction with the BMP and TGFβ Pathways. Front Physiol , 7, 378.
- 5. Atsuta Y & Takahashi Y. (2015). FGF8 coordinates tissue elongation and cell epithelialization during early kidney tubulogenesis. Development, 142, 2329-37.

#### Acknowledgement:

- I express my deep sense of gratitude to Dr. Sukhendu Roy, Assistant Professor, Head of the Department of Zoology, Gushkara Mahavidyalaya under whose direction this study was conducted.
- I am ever grateful to Dr. Saurabh Sarkar, Assistant Professor, Department of Zoology, Gushkara Mahavidyalaya, for his continuous encouragement.
- I am thankful to Aparnita Nandi Roy, Lecturer, Department of Zoology, Gushkara Mahavidyalaya, for her valuable suggestions.
- I am also thankful to Dr. Nabyendu Rakshit & Miss Poulomi Roy, SACT-I, Department of Zoology, Gushkara Mahavidyalaya, for their continuous support.
- I am grateful to Principal, Dr. Swapan Kumar Pan, Gushkara Mahavidyalaya, Gushkara, Purba Burdwan, West Bengal.
- My appreciation goes to Mr. Kalyan Kr. Mukherjee and Mr. Uday Chand Mete, Laboratory Attendant for technical works, whose active involvement smoothened the entire tedious venture.



- I owe a lot to my parents, who encouraged and helped me at every stage of my personal and academic life.
- Above all, I owe it all to Almighty God for granting me the wisdom, health and strength to undertake this project work and enabling me to its completion.

